hf_text-generation-inference/server/text_generation_server/utils/sgmv.py

249 lines
7.5 KiB
Python
Raw Normal View History

Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 12:46:27 -06:00
# Origin: https://github.com/predibase/lorax
# Path: lorax/server/lorax_server/utils/sgmv.py
# License: Apache License Version 2.0, January 2004
import os
import warnings
from functools import lru_cache
from typing import List, Tuple
import torch
import torch.nn.functional as F
try:
import punica_kernels as _kernels
HAS_SGMV = not bool(os.environ.get("DISABLE_SGMV", ""))
except ImportError:
warnings.warn("Could not import SGMV kernel from Punica, falling back to loop.")
_kernels = None
HAS_SGMV = False
MIN_SGMV_RANK = 8
MIN_RANK_CUSTOM = 16
MAX_RANK_CUSTOM = 128
SGMV_BLOCK_SIZE = 16
BGMV_MAX_RANK = 64
def has_sgmv() -> bool:
return HAS_SGMV
def pad_rank(t: torch.Tensor, dim: int, world_size: int) -> torch.Tensor:
"""Pad a tensor to the minimum rank for SGMV and the nearest multiple of the SGMV block size."""
if not has_sgmv():
return t
# tensor parallelism will result in effective rank being divided by world_size,
# so we need to scale the min rank to offset that effect
min_rank = MIN_SGMV_RANK * world_size
# if we're at or below the min rank, pad up to the min rank
# otherwise, pad to the nearest multiple of the block size
current_rank = t.size(dim)
target_rank = (
min_rank
if current_rank <= min_rank
else (current_rank + SGMV_BLOCK_SIZE - 1) // SGMV_BLOCK_SIZE * SGMV_BLOCK_SIZE
)
if current_rank == target_rank:
return t
pad_size = target_rank - current_rank
# see complicatd pad syntax here: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
pad = [0, 0] * t.dim()
pad[(t.dim() - dim - 1) * 2 + 1] = pad_size
pad = tuple(pad)
return F.pad(t, pad, mode="constant", value=0.0)
def use_cutlass_shrink(lora_rank: int) -> bool:
return lora_rank < MIN_RANK_CUSTOM
def orient_for_rank(t: torch.Tensor, rank: int) -> torch.Tensor:
if MIN_RANK_CUSTOM <= rank <= MAX_RANK_CUSTOM:
return t.transpose(0, 1)
return t
# Source: https://github.com/punica-ai/punica/blob/master/src/punica/ops/__init__.py
def add_lora_sgmv_cutlass(
y: torch.Tensor,
x: torch.Tensor,
wa_ptr: torch.Tensor,
wb_ptr: torch.Tensor,
s_start: torch.Tensor,
s_end: torch.Tensor,
layer_idx: int,
lora_rank: int,
):
"""
Semantics:
y[s[i]:s[i+1]] += x[s[i]:s[i+1]] @ deref(wa_ptr[i]).T @ deref(wb_ptr[i])
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
wa_ptr: Shape: `[S]`. DType: torch.int64. Pointer to the weight matrices.\
Weight matrix shape: `[num_layers, R, H1]`.
wb_ptr: Shape: `[S]`. DType: torch.int64. Pointer to the weight matrices.\
Weight matrix shape: `[num_layers, R, H2]`.
s_start: Shape: `[S]`, DType: torch.int32. Indptr of the weight matrices start indices.
s_end: Shape: `[S]`, DType: torch.int32. Indptr of the weight matrices end indices.
layer_idx: Layer index of the weight matrices.
"""
if lora_rank < MIN_RANK_CUSTOM or lora_rank > MAX_RANK_CUSTOM:
# Custom SGMV shrink only supports rank 16, 32, 64, 128
_add_lora_sgmv_cutlass_legacy(
y, x, wa_ptr, wb_ptr, s_start, s_end, layer_idx, lora_rank
)
return
tmp1 = torch.empty((8 * 1024 * 1024,), dtype=torch.uint8, device=x.device)
tmp2_size = _kernels.sgmv_cutlass_tmp_size(wa_ptr.size(0))
tmp2 = torch.empty((tmp2_size,), dtype=torch.uint8, device=x.device)
v = torch.zeros((x.size(0), lora_rank), dtype=x.dtype, device=x.device)
_kernels.sgmv_shrink(v, x, wa_ptr, s_start, s_end, tmp1, layer_idx)
_kernels.sgmv_cutlass(y, v, wb_ptr, s_start, s_end, tmp2, layer_idx)
def _add_lora_sgmv_cutlass_legacy(
y: torch.Tensor,
x: torch.Tensor,
wa_ptr: torch.Tensor,
wb_ptr: torch.Tensor,
s_start: torch.IntTensor,
s_end: torch.IntTensor,
layer_idx: int,
lora_rank: int,
):
tmp_size = _kernels.sgmv_cutlass_tmp_size(wa_ptr.size(0))
tmp = torch.empty((tmp_size,), dtype=torch.uint8, device=x.device)
v = torch.zeros((x.size(0), lora_rank), dtype=x.dtype, device=x.device)
_kernels.sgmv_cutlass(v, x, wa_ptr, s_start, s_end, tmp, layer_idx)
_kernels.sgmv_cutlass(y, v, wb_ptr, s_start, s_end, tmp, layer_idx)
@lru_cache(maxsize=1)
def get_tmp_tensor(device: torch.device) -> torch.Tensor:
return torch.empty((8 * 1024 * 1024,), dtype=torch.uint8, device=device)
@lru_cache(maxsize=32)
def get_tmp_tensor_for_size(size: int, device: torch.device) -> torch.Tensor:
tmp_size = _kernels.sgmv_cutlass_tmp_size(size)
return torch.empty((tmp_size,), dtype=torch.uint8, device=device)
def get_tmp_tensor_for_size_no_kernels(size: int, device: torch.device) -> torch.Tensor:
return torch.empty((size,), dtype=torch.uint8, device=device)
def get_tmp_expand_size(size: int) -> int:
return _kernels.sgmv_cutlass_tmp_size(size)
def get_tmp_tensors(
nsegments: int, lora_rank: int, device: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
if use_cutlass_shrink(lora_rank) and has_sgmv():
tmp = get_tmp_tensor_for_size(nsegments, device)
return tmp, tmp
else:
tmp_shrink = get_tmp_tensor(device)
tmp_expand = get_tmp_tensor_for_size_no_kernels(nsegments, device)
return tmp_shrink, tmp_expand
def lora_a_sgmv_cutlass(
x: torch.Tensor,
tmp: torch.Tensor,
wa_ptr: torch.Tensor,
s_start: torch.IntTensor,
s_end: torch.IntTensor,
layer_idx: int,
lora_rank: int,
) -> torch.Tensor:
v = torch.zeros((x.size(0), lora_rank), dtype=x.dtype, device=x.device)
if MIN_RANK_CUSTOM <= lora_rank <= MAX_RANK_CUSTOM:
_kernels.sgmv_shrink(v, x, wa_ptr, s_start, s_end, tmp, layer_idx)
else:
_kernels.sgmv_cutlass(v, x, wa_ptr, s_start, s_end, tmp, layer_idx)
return v
def lora_b_sgmv_cutlass(
y: torch.Tensor,
v: torch.Tensor,
tmp: torch.Tensor,
wb_ptr: torch.Tensor,
s_start: torch.IntTensor,
s_end: torch.IntTensor,
layer_idx: int,
):
_kernels.sgmv_cutlass(y, v, wb_ptr, s_start, s_end, tmp, layer_idx)
"""
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ wa_T_all[indices[i], layer_idx, :, :].transpose(-1, -2)
@ wb_T_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
v: Shape: `[B, R]`. Temporary vector.
x: Shape: `[B, H1]`. Input vectors.
wa_T_all: Shape: `[None, L, R, H1]`. All of the transposed LoRA A matrices.
wb_T_all: Shape: `[None, L, H2, R]`. All of the transposed LoRA B matrices.
indicies: Shape: `[B]`. Indices of the LoRA weights.
layer_idx: Layer index of LoRA weights.
scale: Scaling factor.
"""
def add_lora_a_bgmv(
v: torch.Tensor,
x: torch.Tensor,
wa_T_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
):
_kernels.dispatch_bgmv(v, x, wa_T_all, indicies, layer_idx, 1.0)
def add_lora_b_bgmv(
y: torch.Tensor,
v: torch.Tensor,
wb_T_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
):
_kernels.dispatch_bgmv(y, v, wb_T_all, indicies, layer_idx, 1.0)
def segmented_matmul(
y: torch.Tensor,
x: torch.Tensor,
w: List[torch.Tensor],
b: List[torch.Tensor],
s_start: torch.IntTensor,
s_end: torch.IntTensor,
):
for i in range(len(w)):
if s_end[i] - s_start[i] <= 0:
continue
xi = x[s_start[i] : s_end[i]]
wi = w[i]
bi = b[i]
y[s_start[i] : s_end[i]] = F.linear(xi, wi, bi)