hf_text-generation-inference/docs/source/basic_tutorials/local_launch.md

98 lines
2.5 KiB
Markdown
Raw Normal View History

# Installing and Launching Locally
Before you start, you will need to setup your environment, install the Text Generation Inference. Text Generation Inference is tested on **Python 3.9+**.
## Local Installation for Text Generation Inference
Text Generation Inference is available on pypi, conda and GitHub.
To install and launch locally, first [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
Python 3.9, e.g. using `conda`:
```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
conda create -n text-generation-inference python=3.9
conda activate text-generation-inference
```
You may also need to install Protoc.
On Linux:
```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```
On MacOS, using Homebrew:
```shell
brew install protobuf
```
Then run:
```shell
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels```
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
```shell
sudo apt-get install libssl-dev gcc -y
```
Once installation is done, simply run:
```shell
make run-falcon-7b-instruct
```
This will serve Falcon 7B Instruct model from the port 8080, which we can query.
You can then query the model using either the `/generate` or `/generate_stream` routes:
```shell
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```
```shell
curl 127.0.0.1:8080/generate_stream \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```
or through Python:
```shell
pip install text-generation
```
2023-08-01 03:44:25 -06:00
Then run:
```python
from text_generation import Client
client = Client("http://127.0.0.1:8080")
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
if not response.token.special:
text += response.token.text
print(text)
```
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs)) or in the cli:
```
text-generation-launcher --help
2023-08-01 03:44:25 -06:00
```