2023-07-21 02:59:00 -06:00
|
|
|
import pytest
|
|
|
|
|
2024-06-11 05:25:14 -06:00
|
|
|
from testing_utils import is_flaky_async, SYSTEM, require_backend_async
|
|
|
|
|
2023-07-21 02:59:00 -06:00
|
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
|
|
def flash_llama_gptq_handle(launcher):
|
2024-07-05 06:12:16 -06:00
|
|
|
with launcher(
|
|
|
|
"astronomer/Llama-3-8B-Instruct-GPTQ-4-Bit", num_shard=2, quantize="gptq"
|
|
|
|
) as handle:
|
2023-07-21 02:59:00 -06:00
|
|
|
yield handle
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
|
|
async def flash_llama_gptq(flash_llama_gptq_handle):
|
2024-07-01 06:12:26 -06:00
|
|
|
await flash_llama_gptq_handle.health()
|
2023-07-21 02:59:00 -06:00
|
|
|
return flash_llama_gptq_handle.client
|
|
|
|
|
|
|
|
|
2024-06-25 08:53:20 -06:00
|
|
|
@pytest.mark.release
|
2023-07-21 02:59:00 -06:00
|
|
|
@pytest.mark.asyncio
|
|
|
|
@pytest.mark.private
|
2024-06-11 05:25:14 -06:00
|
|
|
@is_flaky_async(max_attempts=5)
|
2023-07-21 02:59:00 -06:00
|
|
|
async def test_flash_llama_gptq(flash_llama_gptq, response_snapshot):
|
|
|
|
response = await flash_llama_gptq.generate(
|
|
|
|
"Test request", max_new_tokens=10, decoder_input_details=True
|
|
|
|
)
|
|
|
|
|
|
|
|
assert response.details.generated_tokens == 10
|
2024-06-11 05:25:14 -06:00
|
|
|
assert response.generated_text == "\nTest request\nTest request\nTest request\n"
|
|
|
|
|
|
|
|
if SYSTEM != "rocm":
|
|
|
|
# Logits were taken on an Nvidia GPU, and are too far off to be meaningfully compared.
|
|
|
|
assert response == response_snapshot
|
2023-07-21 02:59:00 -06:00
|
|
|
|
|
|
|
|
2024-06-25 08:53:20 -06:00
|
|
|
@pytest.mark.release
|
2023-07-21 02:59:00 -06:00
|
|
|
@pytest.mark.asyncio
|
|
|
|
@pytest.mark.private
|
2024-06-11 05:25:14 -06:00
|
|
|
@require_backend_async("cuda")
|
2023-07-21 02:59:00 -06:00
|
|
|
async def test_flash_llama_gptq_all_params(flash_llama_gptq, response_snapshot):
|
2024-06-11 05:25:14 -06:00
|
|
|
# TODO: investigate why exllamav2 gptq kernel is this much more non-deterministic on ROCm vs on CUDA.
|
|
|
|
|
2023-07-21 02:59:00 -06:00
|
|
|
response = await flash_llama_gptq.generate(
|
|
|
|
"Test request",
|
|
|
|
max_new_tokens=10,
|
|
|
|
repetition_penalty=1.2,
|
|
|
|
return_full_text=True,
|
|
|
|
temperature=0.5,
|
|
|
|
top_p=0.9,
|
|
|
|
top_k=10,
|
|
|
|
truncate=5,
|
|
|
|
typical_p=0.9,
|
|
|
|
watermark=True,
|
|
|
|
decoder_input_details=True,
|
|
|
|
seed=0,
|
|
|
|
)
|
|
|
|
assert response.details.generated_tokens == 10
|
|
|
|
assert response == response_snapshot
|
|
|
|
|
|
|
|
|
2024-06-25 08:53:20 -06:00
|
|
|
@pytest.mark.release
|
2023-07-21 02:59:00 -06:00
|
|
|
@pytest.mark.asyncio
|
|
|
|
@pytest.mark.private
|
2024-06-11 05:25:14 -06:00
|
|
|
@require_backend_async("cuda")
|
2023-07-24 03:43:58 -06:00
|
|
|
async def test_flash_llama_gptq_load(
|
|
|
|
flash_llama_gptq, generate_load, response_snapshot
|
|
|
|
):
|
2024-06-11 05:25:14 -06:00
|
|
|
# TODO: investigate why exllamav2 gptq kernel is this much more non-deterministic on ROCm vs on CUDA.
|
|
|
|
|
2023-07-24 03:43:58 -06:00
|
|
|
responses = await generate_load(
|
|
|
|
flash_llama_gptq, "Test request", max_new_tokens=10, n=4
|
|
|
|
)
|
2023-07-21 02:59:00 -06:00
|
|
|
|
|
|
|
assert len(responses) == 4
|
|
|
|
assert all([r.generated_text == responses[0].generated_text for r in responses])
|
|
|
|
|
|
|
|
assert responses == response_snapshot
|