135 lines
4.2 KiB
Python
135 lines
4.2 KiB
Python
|
import pytest
|
|||
|
import requests
|
|||
|
|
|||
|
|
|||
|
@pytest.fixture(scope="module")
|
|||
|
def lora_mistral_handle(launcher):
|
|||
|
with launcher(
|
|||
|
"mistralai/Mistral-7B-v0.1",
|
|||
|
lora_adapters=[
|
|||
|
"predibase/dbpedia",
|
|||
|
"predibase/customer_support",
|
|||
|
],
|
|||
|
cuda_graphs=[0],
|
|||
|
) as handle:
|
|||
|
yield handle
|
|||
|
|
|||
|
|
|||
|
@pytest.fixture(scope="module")
|
|||
|
async def lora_mistral(lora_mistral_handle):
|
|||
|
await lora_mistral_handle.health(300)
|
|||
|
return lora_mistral_handle.client
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.asyncio
|
|||
|
@pytest.mark.private
|
|||
|
async def test_lora_mistral(lora_mistral, response_snapshot):
|
|||
|
response = await lora_mistral.generate(
|
|||
|
"Test request", max_new_tokens=10, decoder_input_details=True
|
|||
|
)
|
|||
|
assert response.details.generated_tokens == 10
|
|||
|
|
|||
|
|
|||
|
classification_prompt = """You are given the title and the body of an article below. Please determine the type of the article.\n### Title: Great White Whale\n\n### Body: Great White Whale is the debut album by the Canadian rock band Secret and Whisper. The album was in the works for about a year and was released on February 12 2008. A music video was shot in Pittsburgh for the album's first single XOXOXO. The album reached number 17 on iTunes's top 100 albums in its first week on sale.\n\n### Article Type:"""
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.asyncio
|
|||
|
@pytest.mark.private
|
|||
|
async def test_lora_mistral_without_adapter(lora_mistral, response_snapshot):
|
|||
|
response = requests.post(
|
|||
|
f"{lora_mistral.base_url}/generate",
|
|||
|
headers=lora_mistral.headers,
|
|||
|
json={
|
|||
|
"inputs": classification_prompt,
|
|||
|
"parameters": {
|
|||
|
"max_new_tokens": 40,
|
|||
|
"details": True,
|
|||
|
},
|
|||
|
},
|
|||
|
)
|
|||
|
|
|||
|
assert response.status_code == 200
|
|||
|
data = response.json()
|
|||
|
assert (
|
|||
|
data["generated_text"]
|
|||
|
== "\n\n### 1. News\n### 2. Blog\n### 3. Article\n### 4. Review\n### 5. Other\n\n\n\n\n\n\n\n\n"
|
|||
|
)
|
|||
|
assert data == response_snapshot
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.asyncio
|
|||
|
@pytest.mark.private
|
|||
|
async def test_lora_mistral_with_dbpedia_adapter(lora_mistral, response_snapshot):
|
|||
|
response = requests.post(
|
|||
|
f"{lora_mistral.base_url}/generate",
|
|||
|
headers=lora_mistral.headers,
|
|||
|
json={
|
|||
|
"inputs": classification_prompt,
|
|||
|
"parameters": {
|
|||
|
"max_new_tokens": 40,
|
|||
|
"adapter_id": "predibase/dbpedia",
|
|||
|
"details": True,
|
|||
|
},
|
|||
|
},
|
|||
|
)
|
|||
|
|
|||
|
assert response.status_code == 200
|
|||
|
data = response.json()
|
|||
|
assert data["generated_text"] == " 11"
|
|||
|
assert data == response_snapshot
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.asyncio
|
|||
|
@pytest.mark.private
|
|||
|
async def test_lora_mistral_with_customer_support_adapter(
|
|||
|
lora_mistral, response_snapshot
|
|||
|
):
|
|||
|
print(lora_mistral.base_url)
|
|||
|
print(lora_mistral.headers)
|
|||
|
response = requests.post(
|
|||
|
f"{lora_mistral.base_url}/generate",
|
|||
|
headers=lora_mistral.headers,
|
|||
|
json={
|
|||
|
"inputs": "What are 3 unique words that describe you?",
|
|||
|
"parameters": {
|
|||
|
"max_new_tokens": 40,
|
|||
|
"adapter_id": "predibase/customer_support",
|
|||
|
"details": True,
|
|||
|
},
|
|||
|
},
|
|||
|
)
|
|||
|
|
|||
|
assert response.status_code == 200
|
|||
|
data = response.json()
|
|||
|
assert (
|
|||
|
data["generated_text"]
|
|||
|
== "\n\nI’m not sure if I can come up with 3 unique words that describe me, but I’ll try.\n\n1. Creative\n2. Funny\n3."
|
|||
|
)
|
|||
|
assert data == response_snapshot
|
|||
|
|
|||
|
|
|||
|
@pytest.mark.asyncio
|
|||
|
@pytest.mark.private
|
|||
|
async def test_lora_mistral_without_customer_support_adapter(
|
|||
|
lora_mistral, response_snapshot
|
|||
|
):
|
|||
|
response = requests.post(
|
|||
|
f"{lora_mistral.base_url}/generate",
|
|||
|
headers=lora_mistral.headers,
|
|||
|
json={
|
|||
|
"inputs": "What are 3 unique words that describe you?",
|
|||
|
"parameters": {
|
|||
|
"max_new_tokens": 40,
|
|||
|
"details": True,
|
|||
|
},
|
|||
|
},
|
|||
|
)
|
|||
|
|
|||
|
assert response.status_code == 200
|
|||
|
data = response.json()
|
|||
|
assert (
|
|||
|
data["generated_text"]
|
|||
|
== "\n\nI’m a very passionate person. I’m very driven. I’m very determined.\n\nWhat is your favorite thing about being a teacher?\n\nI love the fact"
|
|||
|
)
|
|||
|
assert data == response_snapshot
|