hf_text-generation-inference/integration-tests/models/test_completion_prompts.py

247 lines
8.2 KiB
Python
Raw Normal View History

import pytest
import requests
import json
from aiohttp import ClientSession
from text_generation.types import Completion, ChatCompletionChunk
@pytest.fixture(scope="module")
def flash_llama_completion_handle(launcher):
with launcher(
"meta-llama/Meta-Llama-3.1-8B-Instruct",
) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_llama_completion(flash_llama_completion_handle):
await flash_llama_completion_handle.health(300)
return flash_llama_completion_handle.client
# NOTE: since `v1/completions` is a deprecated inferface/endpoint we do not provide a convience
# method for it. Instead, we use the `requests` library to make the HTTP request directly.
@pytest.mark.release
def test_flash_llama_completion_single_prompt(
flash_llama_completion, response_snapshot
):
response = requests.post(
f"{flash_llama_completion.base_url}/v1/completions",
json={
"model": "tgi",
"prompt": "What is Deep Learning?",
"max_tokens": 10,
"temperature": 0.0,
},
headers=flash_llama_completion.headers,
stream=False,
)
response = response.json()
assert len(response["choices"]) == 1
assert (
response["choices"][0]["text"]
== " A Beginners Guide\nDeep learning is a subset"
)
assert response == response_snapshot
@pytest.mark.release
async def test_flash_llama_completion_stream_usage(
flash_llama_completion, response_snapshot
):
url = f"{flash_llama_completion.base_url}/v1/chat/completions"
request = {
"model": "tgi",
"messages": [
{
"role": "user",
"content": "What is Deep Learning?",
}
],
"max_tokens": 10,
"temperature": 0.0,
"stream_options": {"include_usage": True},
"stream": True,
}
string = ""
chunks = []
had_usage = False
async with ClientSession(headers=flash_llama_completion.headers) as session:
async with session.post(url, json=request) as response:
# iterate over the stream
async for chunk in response.content.iter_any():
# remove "data:"
chunk = chunk.decode().split("\n\n")
# remove "data:" if present
chunk = [c.replace("data:", "") for c in chunk]
# remove empty strings
chunk = [c for c in chunk if c]
# remove completion marking chunk
chunk = [c for c in chunk if c != " [DONE]"]
# parse json
chunk = [json.loads(c) for c in chunk]
for c in chunk:
chunks.append(ChatCompletionChunk(**c))
assert "choices" in c
if len(c["choices"]) == 1:
index = c["choices"][0]["index"]
assert index == 0
string += c["choices"][0]["delta"]["content"]
has_usage = c["usage"] is not None
assert not had_usage
if has_usage:
had_usage = True
else:
raise RuntimeError("Expected different payload")
assert had_usage
assert (
string
== "**Deep Learning: An Overview**\n=====================================\n\n"
)
assert chunks == response_snapshot
request = {
"model": "tgi",
"messages": [
{
"role": "user",
"content": "What is Deep Learning?",
}
],
"max_tokens": 10,
"temperature": 0.0,
"stream": True,
}
string = ""
chunks = []
had_usage = False
async with ClientSession(headers=flash_llama_completion.headers) as session:
async with session.post(url, json=request) as response:
# iterate over the stream
async for chunk in response.content.iter_any():
# remove "data:"
chunk = chunk.decode().split("\n\n")
# remove "data:" if present
chunk = [c.replace("data:", "") for c in chunk]
# remove empty strings
chunk = [c for c in chunk if c]
# remove completion marking chunk
chunk = [c for c in chunk if c != " [DONE]"]
# parse json
chunk = [json.loads(c) for c in chunk]
for c in chunk:
chunks.append(ChatCompletionChunk(**c))
assert "choices" in c
if len(c["choices"]) == 1:
index = c["choices"][0]["index"]
assert index == 0
string += c["choices"][0]["delta"]["content"]
has_usage = c["usage"] is not None
assert not had_usage
if has_usage:
had_usage = True
else:
raise RuntimeError("Expected different payload")
assert not had_usage
assert (
string
== "**Deep Learning: An Overview**\n=====================================\n\n"
)
@pytest.mark.release
def test_flash_llama_completion_many_prompts(flash_llama_completion, response_snapshot):
response = requests.post(
f"{flash_llama_completion.base_url}/v1/completions",
json={
"model": "tgi",
"prompt": [
"What is Deep Learning?",
"Is water wet?",
"What is the capital of France?",
"def mai",
],
"max_tokens": 10,
"seed": 0,
"temperature": 0.0,
},
headers=flash_llama_completion.headers,
stream=False,
)
response = response.json()
assert len(response["choices"]) == 4
all_indexes = [(choice["index"], choice["text"]) for choice in response["choices"]]
all_indexes.sort()
all_indices, all_strings = zip(*all_indexes)
assert list(all_indices) == [0, 1, 2, 3]
assert list(all_strings) == [
" A Beginners Guide\nDeep learning is a subset",
" This is a question that has puzzled many people for",
" Paris\nWhat is the capital of France?\nThe",
'usculas_minusculas(s):\n """\n',
]
assert response == response_snapshot
@pytest.mark.release
async def test_flash_llama_completion_many_prompts_stream(
flash_llama_completion, response_snapshot
):
request = {
"model": "tgi",
"prompt": [
"What is Deep Learning?",
"Is water wet?",
"What is the capital of France?",
"def mai",
],
"max_tokens": 10,
"seed": 0,
"temperature": 0.0,
"stream": True,
}
url = f"{flash_llama_completion.base_url}/v1/completions"
chunks = []
strings = [""] * 4
async with ClientSession(headers=flash_llama_completion.headers) as session:
async with session.post(url, json=request) as response:
# iterate over the stream
async for chunk in response.content.iter_any():
# remove "data:"
chunk = chunk.decode().split("\n\n")
# remove "data:" if present
chunk = [c.replace("data:", "") for c in chunk]
# remove empty strings
chunk = [c for c in chunk if c]
# remove completion marking chunk
chunk = [c for c in chunk if c != " [DONE]"]
# parse json
chunk = [json.loads(c) for c in chunk]
for c in chunk:
chunks.append(Completion(**c))
assert "choices" in c
index = c["choices"][0]["index"]
assert 0 <= index <= 4
strings[index] += c["choices"][0]["text"]
assert response.status == 200
assert list(strings) == [
" A Beginners Guide\nDeep learning is a subset",
" This is a question that has puzzled many people for",
" Paris\nWhat is the capital of France?\nThe",
'usculas_minusculas(s):\n """\n',
]
assert chunks == response_snapshot