76 lines
2.2 KiB
Python
76 lines
2.2 KiB
Python
|
import pytest
|
||
|
|
||
|
|
||
|
@pytest.fixture(scope="module")
|
||
|
def flash_mixtral_handle(launcher):
|
||
|
with launcher("mistralai/Mixtral-8x7B-v0.1", num_shard=8) as handle:
|
||
|
yield handle
|
||
|
|
||
|
|
||
|
@pytest.fixture(scope="module")
|
||
|
async def flash_mixtral(flash_mixtral_handle):
|
||
|
await flash_mixtral_handle.health(300)
|
||
|
return flash_mixtral_handle.client
|
||
|
|
||
|
|
||
|
@pytest.mark.skip(reason="requires > 4 shards")
|
||
|
@pytest.mark.asyncio
|
||
|
async def test_flash_mixtral(flash_mixtral, response_snapshot):
|
||
|
response = await flash_mixtral.generate(
|
||
|
"What is gradient descent?\n\n", max_new_tokens=10, decoder_input_details=True
|
||
|
)
|
||
|
|
||
|
assert response.details.generated_tokens == 10
|
||
|
assert (
|
||
|
response.generated_text
|
||
|
== "Gradient descent is an optimization algorithm used to minimize"
|
||
|
)
|
||
|
assert response == response_snapshot
|
||
|
|
||
|
|
||
|
@pytest.mark.skip(reason="requires > 4 shards")
|
||
|
@pytest.mark.asyncio
|
||
|
async def test_flash_mixtral_all_params(flash_mixtral, response_snapshot):
|
||
|
response = await flash_mixtral.generate(
|
||
|
"What is gradient descent?\n\n",
|
||
|
max_new_tokens=10,
|
||
|
repetition_penalty=1.2,
|
||
|
return_full_text=True,
|
||
|
stop_sequences=["test"],
|
||
|
temperature=0.5,
|
||
|
top_p=0.9,
|
||
|
top_k=10,
|
||
|
truncate=5,
|
||
|
typical_p=0.9,
|
||
|
watermark=True,
|
||
|
decoder_input_details=True,
|
||
|
seed=0,
|
||
|
)
|
||
|
|
||
|
assert response.details.generated_tokens == 10
|
||
|
assert (
|
||
|
response.generated_text
|
||
|
== "What is gradient descent?\n\nIt seems to me, that if you're"
|
||
|
)
|
||
|
assert response == response_snapshot
|
||
|
|
||
|
|
||
|
@pytest.mark.skip(reason="requires > 4 shards")
|
||
|
@pytest.mark.asyncio
|
||
|
async def test_flash_mixtral_load(flash_mixtral, generate_load, response_snapshot):
|
||
|
responses = await generate_load(
|
||
|
flash_mixtral, "What is gradient descent?\n\n", max_new_tokens=10, n=4
|
||
|
)
|
||
|
|
||
|
assert len(responses) == 4
|
||
|
assert responses[0].details.generated_tokens == 10
|
||
|
assert (
|
||
|
responses[0].generated_text
|
||
|
== "Gradient descent is an optimization algorithm used to minimize"
|
||
|
)
|
||
|
assert all(
|
||
|
[r.generated_text == responses[0].generated_text for r in responses]
|
||
|
), f"{[r.generated_text for r in responses]}"
|
||
|
|
||
|
assert responses == response_snapshot
|