hf_text-generation-inference/docs/source/quicktour.md

92 lines
2.7 KiB
Markdown
Raw Normal View History

# Quick Tour
The easiest way of getting started is using the official Docker container. Install Docker following [their installation instructions](https://docs.docker.com/get-docker/).
Let's say you want to deploy [Falcon-7B Instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) model with TGI. Here is an example on how to do that:
```bash
model=tiiuae/falcon-7b-instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
Preping 1.1.0 (#1066) # What does this PR do? Upgrade all relevant versions and dependencies. <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-09-27 02:40:18 -06:00
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.1.0 --model-id $model
```
<Tip warning={true}>
To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) . We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
</Tip>
Once TGI is running, you can use the `generate` endpoint by doing requests. To learn more about how to query the endpoints, check the [Consuming TGI](./basic_tutorials/consuming_tgi) section, where we show examples with utility libraries and UIs. Below you can see a simple snippet to query the endpoint.
<inferencesnippet>
<python>
```python
import requests
headers = {
"Content-Type": "application/json",
}
data = {
'inputs': 'What is Deep Learning?',
'parameters': {
'max_new_tokens': 20,
},
}
response = requests.post('http://127.0.0.1:8080/generate', headers=headers, json=data)
print(response.json())
# {'generated_text': '\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can'}
```
</python>
<js>
```js
async function query() {
const response = await fetch(
'http://127.0.0.1:8080/generate',
{
method: 'POST',
headers: { 'Content-Type': 'application/json'},
body: JSON.stringify({
'inputs': 'What is Deep Learning?',
'parameters': {
'max_new_tokens': 20
}
})
}
);
}
query().then((response) => {
console.log(JSON.stringify(response));
});
/// {"generated_text":"\n\nDeep Learning is a subset of Machine Learning that is concerned with the development of algorithms that can"}
```
</js>
<curl>
```curl
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
```
</curl>
</inferencesnippet>
<Tip>
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
2023-08-10 06:32:51 -06:00
```bash
2023-09-28 02:18:18 -06:00
docker run ghcr.io/huggingface/text-generation-inference:1.1.0 --help
```
</Tip>