2024-05-31 09:57:01 -06:00
|
|
|
import torch
|
|
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
2024-07-01 15:28:00 -06:00
|
|
|
from text_generation_server.models.globals import FLASH_DECODING, BLOCK_SIZE
|
|
|
|
from text_generation_server.layers.attention import Seqlen
|
2024-05-31 09:57:01 -06:00
|
|
|
|
|
|
|
major, minor = torch.cuda.get_device_capability()
|
|
|
|
is_sm75 = major == 7 and minor == 5
|
|
|
|
_PARTITION_SIZE = 512
|
|
|
|
|
|
|
|
try:
|
|
|
|
from vllm._C import cache_ops
|
|
|
|
from vllm._C import ops
|
|
|
|
except Exception as e:
|
|
|
|
raise ImportError(
|
|
|
|
f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def reshape_and_cache(
|
|
|
|
key: torch.Tensor,
|
|
|
|
value: torch.Tensor,
|
|
|
|
key_cache: torch.Tensor,
|
|
|
|
value_cache: torch.Tensor,
|
|
|
|
slots: torch.Tensor,
|
|
|
|
):
|
2024-07-01 15:28:00 -06:00
|
|
|
if FLASH_DECODING:
|
|
|
|
shape = key_cache.shape
|
|
|
|
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
|
|
|
|
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
|
|
|
|
else:
|
|
|
|
cache_ops.reshape_and_cache(
|
|
|
|
key, value, key_cache, value_cache, slots, "auto", 1.0
|
|
|
|
)
|
2024-05-31 09:57:01 -06:00
|
|
|
|
|
|
|
|
|
|
|
def paged_attention(
|
|
|
|
out: torch.Tensor,
|
|
|
|
query: torch.Tensor,
|
|
|
|
key_cache: torch.Tensor,
|
|
|
|
value_cache: torch.Tensor,
|
|
|
|
kv_head_mapping: torch.Tensor,
|
|
|
|
softmax_scale: float,
|
|
|
|
block_tables: torch.Tensor,
|
2024-07-01 15:28:00 -06:00
|
|
|
seqlen: Seqlen,
|
2024-05-31 09:57:01 -06:00
|
|
|
max_s: int,
|
|
|
|
):
|
|
|
|
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
|
|
|
|
# Copyright 2023 The vLLM team. All rights
|
|
|
|
# reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
#
|
|
|
|
|
|
|
|
# value_cache => [num_blocks, num_heads, head_size, block_size]
|
2024-07-01 15:28:00 -06:00
|
|
|
# block_size = value_cache.shape[3]
|
|
|
|
block_size = BLOCK_SIZE
|
2024-05-31 09:57:01 -06:00
|
|
|
num_seqs, num_heads, head_size = query.shape
|
|
|
|
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
|
|
|
|
|
|
|
|
# NOTE(woosuk): We use a simple heuristic to decide whether to use
|
|
|
|
# PagedAttention V1 or V2. If the number of partitions is 1, we use
|
|
|
|
# V1 to avoid the overhead of reduction. Also, if the number of
|
|
|
|
# sequences or heads is large, we use V1 since there is enough work
|
|
|
|
# to parallelize.
|
2024-07-01 15:28:00 -06:00
|
|
|
if FLASH_DECODING:
|
|
|
|
max_q = 1
|
|
|
|
max_k = max_s
|
|
|
|
import flash_attn_2_cuda
|
2024-05-31 09:57:01 -06:00
|
|
|
|
2024-07-01 15:28:00 -06:00
|
|
|
# TODO fixme when flash contains the fix.
|
|
|
|
# Number of splits is not correctly handled
|
|
|
|
# by the current path
|
|
|
|
# https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
|
|
|
|
# This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
|
|
|
|
out2 = flash_attn_2_cuda.varlen_fwd(
|
2024-05-31 09:57:01 -06:00
|
|
|
query,
|
|
|
|
key_cache,
|
|
|
|
value_cache,
|
2024-07-01 15:28:00 -06:00
|
|
|
None,
|
|
|
|
seqlen.cu_seqlen_q,
|
|
|
|
seqlen.cu_seqlen_k,
|
|
|
|
None,
|
2024-05-31 09:57:01 -06:00
|
|
|
block_tables,
|
|
|
|
None,
|
2024-07-01 15:28:00 -06:00
|
|
|
max_q,
|
|
|
|
max_k,
|
|
|
|
0.0, # dropout
|
|
|
|
softmax_scale,
|
|
|
|
False, # zero_tensors
|
|
|
|
True, # causal
|
|
|
|
-1, # Window_left
|
|
|
|
-1, # Window right
|
|
|
|
False, # return softmax
|
|
|
|
None, # generator
|
2024-05-31 09:57:01 -06:00
|
|
|
)
|
2024-07-01 15:28:00 -06:00
|
|
|
return out2[0]
|
2024-05-31 09:57:01 -06:00
|
|
|
else:
|
2024-07-01 15:28:00 -06:00
|
|
|
input_lengths = seqlen.input_lengths
|
|
|
|
from vllm._C import ops
|
2024-05-31 09:57:01 -06:00
|
|
|
|
2024-07-01 15:28:00 -06:00
|
|
|
use_v1 = max_s <= 8192 and (
|
|
|
|
max_num_partitions == 1 or num_seqs * num_heads > 512
|
2024-05-31 09:57:01 -06:00
|
|
|
)
|
2024-07-01 15:28:00 -06:00
|
|
|
if use_v1:
|
|
|
|
ops.paged_attention_v1(
|
|
|
|
out,
|
|
|
|
query,
|
|
|
|
key_cache,
|
|
|
|
value_cache,
|
|
|
|
kv_head_mapping,
|
|
|
|
softmax_scale,
|
|
|
|
block_tables,
|
|
|
|
input_lengths,
|
|
|
|
block_size,
|
|
|
|
max_s,
|
|
|
|
None,
|
|
|
|
"auto",
|
|
|
|
1.0,
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
# Run PagedAttention V2.
|
|
|
|
assert _PARTITION_SIZE % block_size == 0
|
|
|
|
tmp_output = torch.empty(
|
|
|
|
size=(num_seqs, num_heads, max_num_partitions, head_size),
|
|
|
|
dtype=out.dtype,
|
|
|
|
device=out.device,
|
|
|
|
)
|
|
|
|
exp_sums = torch.empty(
|
|
|
|
size=(num_seqs, num_heads, max_num_partitions),
|
|
|
|
dtype=torch.float32,
|
|
|
|
device=out.device,
|
|
|
|
)
|
|
|
|
max_logits = torch.empty_like(exp_sums)
|
|
|
|
|
|
|
|
ops.paged_attention_v2(
|
|
|
|
out,
|
|
|
|
exp_sums,
|
|
|
|
max_logits,
|
|
|
|
tmp_output,
|
|
|
|
query,
|
|
|
|
key_cache,
|
|
|
|
value_cache,
|
|
|
|
kv_head_mapping,
|
|
|
|
softmax_scale,
|
|
|
|
block_tables,
|
|
|
|
input_lengths,
|
|
|
|
block_size,
|
|
|
|
max_s,
|
|
|
|
None,
|
|
|
|
"auto",
|
|
|
|
1.0,
|
|
|
|
)
|
|
|
|
return out
|
2024-05-31 09:57:01 -06:00
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
import flash_attn_2_cuda
|
|
|
|
|
|
|
|
V2 = True
|
|
|
|
except ImportError:
|
|
|
|
try:
|
|
|
|
import flash_attn_cuda
|
|
|
|
|
|
|
|
V2 = False
|
|
|
|
except ImportError as e:
|
|
|
|
if major >= 8:
|
|
|
|
architecture_suffix = f"-{SYSTEM}"
|
|
|
|
raise ImportError(
|
|
|
|
"Flash Attention V2 is not installed.\n"
|
|
|
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
|
|
|
f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
|
|
|
|
)
|
|
|
|
elif is_sm75:
|
|
|
|
raise ImportError(
|
|
|
|
"Flash Attention is not installed.\n"
|
|
|
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
|
|
|
"or install flash attention with `cd server && make install install-flash-attention`"
|
|
|
|
) from e
|
|
|
|
else:
|
|
|
|
raise ImportError(
|
|
|
|
f"GPU with CUDA capability {major} {minor} is not supported"
|
|
|
|
) from e
|
|
|
|
|
|
|
|
|
|
|
|
SUPPORTS_WINDOWING = V2
|
|
|
|
if V2:
|
|
|
|
|
|
|
|
def attention(
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
v,
|
|
|
|
out,
|
|
|
|
cu_seqlens,
|
|
|
|
max_s,
|
|
|
|
softmax_scale,
|
|
|
|
window_size_left=-1,
|
|
|
|
causal=True,
|
|
|
|
):
|
|
|
|
if window_size_left <= 0 and window_size_left != -1:
|
|
|
|
raise ValueError("`window_size_left` must be > 0 or -1")
|
|
|
|
return flash_attn_2_cuda.varlen_fwd(
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
v,
|
|
|
|
out,
|
|
|
|
cu_seqlens,
|
|
|
|
cu_seqlens,
|
|
|
|
None,
|
|
|
|
None,
|
|
|
|
None,
|
|
|
|
max_s,
|
|
|
|
max_s,
|
|
|
|
0.0,
|
|
|
|
softmax_scale,
|
|
|
|
False,
|
|
|
|
causal,
|
|
|
|
window_size_left,
|
|
|
|
0,
|
|
|
|
False,
|
|
|
|
None,
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
def attention(
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
v,
|
|
|
|
out,
|
|
|
|
cu_seqlens,
|
|
|
|
max_s,
|
|
|
|
softmax_scale,
|
|
|
|
window_size_left=-1,
|
|
|
|
):
|
|
|
|
if window_size_left != -1:
|
|
|
|
raise NotImplementedError(
|
|
|
|
"window_size_left is only available with flash attn v2"
|
|
|
|
)
|
|
|
|
|
|
|
|
# Flash attention v1 requires q, k and v to have the same number of heads
|
|
|
|
if k.shape[1] != q.shape[1]:
|
|
|
|
# MQA expand
|
|
|
|
if k.shape[1] == 1:
|
|
|
|
k = k.expand(-1, q.shape[1], -1)
|
|
|
|
# Grouped attention reshape
|
|
|
|
else:
|
|
|
|
original_shape = k.shape
|
|
|
|
k = (
|
|
|
|
k.unsqueeze(2)
|
|
|
|
.expand(-1, -1, q.shape[1] // k.shape[1], -1)
|
|
|
|
.reshape(original_shape[0], -1, original_shape[2])
|
|
|
|
)
|
|
|
|
if v.shape[1] != q.shape[1]:
|
|
|
|
# MQA expand
|
|
|
|
if v.shape[1] == 1:
|
|
|
|
v = v.expand(-1, q.shape[1], -1)
|
|
|
|
# Grouped attention reshape
|
|
|
|
else:
|
|
|
|
original_shape = v.shape
|
|
|
|
v = (
|
|
|
|
v.unsqueeze(2)
|
|
|
|
.expand(-1, -1, q.shape[1] // v.shape[1], -1)
|
|
|
|
.reshape(original_shape[0], -1, original_shape[2])
|
|
|
|
)
|
|
|
|
|
|
|
|
return flash_attn_cuda.fwd(
|
|
|
|
q,
|
|
|
|
k,
|
|
|
|
v,
|
|
|
|
out,
|
|
|
|
cu_seqlens,
|
|
|
|
cu_seqlens,
|
|
|
|
max_s,
|
|
|
|
max_s,
|
|
|
|
0.0,
|
|
|
|
softmax_scale,
|
|
|
|
False,
|
|
|
|
True,
|
|
|
|
False,
|
|
|
|
0,
|
|
|
|
None,
|
|
|
|
)
|