hf_text-generation-inference/server/bloom_inference/utils.py

98 lines
2.8 KiB
Python
Raw Normal View History

2022-10-08 04:30:12 -06:00
import os
import contextlib
import torch
import torch.distributed
2022-10-17 06:59:00 -06:00
from datetime import timedelta
2022-10-08 04:30:12 -06:00
from transformers.generation_logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopPLogitsWarper,
TopKLogitsWarper,
)
class Sampling:
def __call__(self, logits):
probs = torch.nn.functional.softmax(logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
return next_tokens
class Greedy:
def __call__(self, logits):
return logits.argmax(dim=-1)
class NextTokenChooser:
def __init__(self, temperature=1.0, top_k=None, top_p=None, do_sample=False):
warpers = LogitsProcessorList()
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
sampling = do_sample
if temperature is not None and temperature != 1.0:
temperature = float(temperature)
warpers.append(TemperatureLogitsWarper(temperature))
sampling = True
if top_k is not None and top_k != 0:
warpers.append(TopKLogitsWarper(top_k=top_k))
sampling = True
if top_p is not None and top_p < 1.0:
warpers.append(TopPLogitsWarper(top_p=top_p))
sampling = True
self.warpers = warpers
self.choice = Sampling() if sampling else Greedy()
def __call__(self, input_ids, scores):
scores = self.warpers(input_ids, scores)
next_ids = self.choice(scores)
return next_ids.unsqueeze(-1)
class StoppingCriteria:
def __init__(self, max_new_tokens=20):
self.max_new_tokens = max_new_tokens
self.current_tokens = 0
def __call__(self, all_ids):
self.current_tokens += 1
if self.current_tokens >= self.max_new_tokens:
return True
return False
def initialize_torch_distributed():
rank = int(os.getenv("RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
if torch.cuda.is_available():
# initialized `torch.distributed`
# Set the device id.
assert world_size <= torch.cuda.device_count(), "Each process is one gpu"
device = rank % torch.cuda.device_count()
torch.cuda.set_device(device)
backend = "nccl"
else:
backend = "gloo"
# Call the init process.
torch.distributed.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
2022-10-17 06:59:00 -06:00
timeout=timedelta(seconds=60),
2022-10-08 04:30:12 -06:00
)
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
@contextlib.contextmanager
def set_default_dtype(dtype):
saved_dtype = torch.get_default_dtype()
torch.set_default_dtype(dtype)
try:
yield
finally:
torch.set_default_dtype(saved_dtype)