hf_text-generation-inference/backends/llamacpp/csrc/backend.hpp

109 lines
3.8 KiB
C++
Raw Normal View History

//
// Created by Morgan Funtowicz on 9/28/2024.
//
#ifndef TGI_LLAMA_CPP_BACKEND_BACKEND_HPP
#define TGI_LLAMA_CPP_BACKEND_BACKEND_HPP
2024-10-29 15:30:36 -06:00
#include <atomic>
#include <cmath>
#include <expected>
#include <filesystem>
#include <functional>
2024-10-29 15:30:36 -06:00
#include <queue>
#include <memory>
#include <optional>
2024-10-24 01:56:40 -06:00
#include <span>
#include <stop_token>
#include <vector>
#include <llama.h>
#include <thread>
2024-10-23 06:12:32 -06:00
#define LLAMA_SUCCESS(x) x == 0
namespace huggingface::tgi::backends::llamacpp {
static constexpr auto llama_context_deleter = [](llama_context *pContext) { llama_free(pContext); };
typedef std::unique_ptr<llama_context, decltype(llama_context_deleter)> llama_context_ptr;
static constexpr auto llama_sampler_deleter = [](llama_sampler *pSampler) { llama_sampler_free(pSampler); };
typedef std::unique_ptr<llama_sampler, decltype(llama_sampler_deleter)> llama_sampler_ptr;
typedef std::function<bool(llama_token, float_t, bool, size_t)> llama_decode_callback;
static constexpr auto llama_void_callback = [](llama_token, float_t, bool, size_t) -> bool { return false; };
/**
2024-11-22 07:13:54 -07:00
* Represent an error which can be returned as part of an std::expected
*/
enum backend_error_t : uint8_t {
2024-11-22 07:13:54 -07:00
// Provided model filepath doesnt exist
MODEL_FILE_DOESNT_EXIST = 1
};
/**
2024-11-22 07:13:54 -07:00
* Hold all the parameters provided by TGI to sample from the final distribution of tokens
*/
struct sampling_params_t {
uint32_t top_k = std::numeric_limits<decltype(top_k)>::max();
float_t top_p = 1.0f;
float_t frequency_penalty = 0.0f;
float_t repetition_penalty = 0.0f;
2024-10-29 15:30:36 -06:00
uint64_t seed = 2014;
/**
2024-10-29 15:30:36 -06:00
* Convert this GenerationParams to the respective llama_sampler structure
* @param Pointer to the model data
* @return
*/
llama_sampler_ptr into_llama_sampler(const llama_model *pModel) const;
2024-10-29 15:30:36 -06:00
};
/**
2024-11-22 07:13:54 -07:00
* Hold all the parameters provided by TGI to control the generation process
*/
struct generation_params_t {
uint32_t max_new_tokens = std::numeric_limits<uint32_t>::max();
bool ignore_eos_token = false;
};
2024-11-22 07:13:54 -07:00
/**
* Container structure wrapping up the current generation context composed by:
* - a non-owning view over the prompt tokens
* - the sampling parameters
* - the generation parameters
*/
struct generation_context_t {
generation_params_t generation_params;
sampling_params_t sampling_params;
std::span<const llama_token> input_tokens;
};
2024-10-29 15:30:36 -06:00
/**
2024-11-22 07:13:54 -07:00
* Represent the actual model execution (i.e. "forward") and generation loop for llama.cpp
*/
class worker_t {
2024-10-29 15:30:36 -06:00
private:
std::shared_ptr<llama_model> model_;
llama_context_ptr context_;
2024-10-29 15:30:36 -06:00
public:
/**
2024-11-22 07:13:54 -07:00
* Create a new llama.cpp worker from the provided llama_model and the context parameters
* @param model Previously allocated `llama_model` holding the weights of the neural network
* @param params Parameters to allocate the execution context of the model
*/
worker_t(std::shared_ptr<llama_model>, const llama_context_params &&);
/**
2024-11-22 07:13:54 -07:00
* Generate multiple successive tokens, sampled from the distribution generated by executing a forward pass
* over the neural network operations and matrices
* @param generation_context The generation context holding sampling and generation parameters along with prompt tokens
* @param callback An optional callback function which would be called everytime a new token is sampled
*/
[[nodiscard]] std::expected<size_t, backend_error_t>
generate(const generation_context_t &, const std::optional<llama_decode_callback> &) const;
};
}
#endif //TGI_LLAMA_CPP_BACKEND_BACKEND_HPP