139 lines
5.5 KiB
Python
139 lines
5.5 KiB
Python
|
import torch
|
||
|
import torch.distributed
|
||
|
|
||
|
from accelerate import init_empty_weights
|
||
|
from opentelemetry import trace
|
||
|
from pathlib import Path
|
||
|
from transformers import AutoTokenizer, AutoConfig
|
||
|
from typing import Optional, List
|
||
|
|
||
|
from text_generation_server.models import FlashCausalLM
|
||
|
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
|
||
|
FlashSantacoderForCausalLM
|
||
|
)
|
||
|
from text_generation_server.utils import (
|
||
|
weight_files,
|
||
|
download_weights,
|
||
|
weight_hub_files,
|
||
|
LocalEntryNotFoundError,
|
||
|
)
|
||
|
|
||
|
tracer = trace.get_tracer(__name__)
|
||
|
|
||
|
|
||
|
class FlashSantacoder(FlashCausalLM):
|
||
|
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||
|
if torch.cuda.is_available():
|
||
|
device = torch.device("cuda")
|
||
|
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||
|
else:
|
||
|
raise NotImplementedError("FlashSantacoder is only available on GPU")
|
||
|
|
||
|
if quantize:
|
||
|
raise NotImplementedError("FlashSantacoder does not support quantization")
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||
|
model_id, revision=revision, padding_side="left"
|
||
|
)
|
||
|
|
||
|
config = AutoConfig.from_pretrained(
|
||
|
model_id, revision=revision,
|
||
|
trust_remote_code=True # Needed as the config is not part of Transformers
|
||
|
)
|
||
|
|
||
|
# We do not use from_pretrained as we modified the model internal module layout
|
||
|
try:
|
||
|
filenames = weight_files(model_id, revision, ".bin")
|
||
|
# Local files not found
|
||
|
except LocalEntryNotFoundError:
|
||
|
hub_files = weight_hub_files(model_id, revision, ".bin")
|
||
|
filenames = download_weights(hub_files, model_id, revision)
|
||
|
|
||
|
with init_empty_weights():
|
||
|
model = FlashSantacoderForCausalLM(config)
|
||
|
|
||
|
self.load_weights(
|
||
|
model,
|
||
|
filenames,
|
||
|
)
|
||
|
self.model = model.eval().to(device).to(dtype)
|
||
|
|
||
|
super(FlashCausalLM, self).__init__(
|
||
|
tokenizer=tokenizer,
|
||
|
device=device,
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def load_weights(
|
||
|
model: FlashSantacoderForCausalLM,
|
||
|
filenames: List[Path],
|
||
|
):
|
||
|
for filename in filenames:
|
||
|
state_dict = torch.load(filename, map_location="cpu")
|
||
|
for key, value in state_dict.items():
|
||
|
layer_name = ".".join(key.split(".")[:4])
|
||
|
|
||
|
# Fused qkv
|
||
|
if "q_attn.weight" in key or "kv_attn.weight" in key:
|
||
|
final_key = layer_name + ".attn.weight"
|
||
|
elif "q_attn.bias" in key or "kv_attn.bias" in key:
|
||
|
final_key = layer_name + ".attn.bias"
|
||
|
|
||
|
else:
|
||
|
final_key = key
|
||
|
|
||
|
module_name, param_name = final_key.rsplit(".", 1)
|
||
|
module = model.get_submodule(module_name)
|
||
|
|
||
|
try:
|
||
|
current_parameter_tensor = module._parameters[param_name]
|
||
|
except KeyError:
|
||
|
current_parameter_tensor = None
|
||
|
|
||
|
if current_parameter_tensor is not None:
|
||
|
if "c_fc.weight" in key or "c_proj.weight" in key or "q_attn.weight" in key or "kv_attn.weight" in key:
|
||
|
# Tranpose as we use nn.Linear instead of Conv1D
|
||
|
value = value.T
|
||
|
|
||
|
if current_parameter_tensor.device == torch.device("meta"):
|
||
|
# Init qkv
|
||
|
if "attn.weight" in final_key:
|
||
|
module._parameters[param_name] = value.new_empty(
|
||
|
(model.transformer.head_size * (model.transformer.num_heads + 2), value.shape[1])
|
||
|
)
|
||
|
elif "attn.bias" in final_key:
|
||
|
module._parameters[param_name] = value.new_empty(
|
||
|
(model.transformer.head_size * (model.transformer.num_heads + 2))
|
||
|
)
|
||
|
|
||
|
# Copy to correct slice
|
||
|
if "q_attn.weight" in key:
|
||
|
module._parameters[param_name][: value.shape[0]] = value
|
||
|
elif "q_attn.bias" in key:
|
||
|
module._parameters[param_name][: value.shape[0]] = value
|
||
|
elif "kv_attn.weight" in key:
|
||
|
module._parameters[param_name][
|
||
|
model.transformer.head_size * model.transformer.num_heads:
|
||
|
] = value
|
||
|
elif "kv_attn.bias" in key:
|
||
|
module._parameters[param_name][
|
||
|
model.transformer.head_size * model.transformer.num_heads:
|
||
|
] = value
|
||
|
else:
|
||
|
if current_parameter_tensor.shape != value.shape:
|
||
|
raise ValueError(
|
||
|
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
|
||
|
)
|
||
|
module._parameters[param_name] = value
|
||
|
else:
|
||
|
module._buffers[param_name] = value
|
||
|
|
||
|
torch.cuda.empty_cache()
|
||
|
model.post_load_weights()
|
||
|
|
||
|
def decode(self, generated_ids: List[int]) -> str:
|
||
|
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
||
|
return self.tokenizer.decode(
|
||
|
generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
|
||
|
)
|