hf_text-generation-inference/server/tests/utils/test_weights.py

1178 lines
34 KiB
Python
Raw Normal View History

import pytest
import torch
from text_generation_server.utils.weights import (
DefaultWeightsLoader,
Weights,
WeightsLoader,
)
from text_generation_server.layers.gptq import GPTQWeight, GPTQWeightsLoader
from text_generation_server.layers.exl2 import Exl2Weight, Exl2WeightsLoader
from text_generation_server.layers.marlin.marlin import (
MarlinWeight,
MarlinWeightsLoader,
)
from types import SimpleNamespace
from typing import List, Optional, Dict, Union
from pathlib import Path
@pytest.fixture
def gptq_weights_loader():
return GPTQWeightsLoader(
bits=4,
groupsize=-1,
desc_act=False,
quant_method="gptq",
quantize="gptq",
sym=True,
)
@pytest.fixture
def gptq_weights_loader_awq():
return GPTQWeightsLoader(
bits=4,
groupsize=-1,
desc_act=False,
quant_method="awq",
quantize="awq",
sym=True,
)
@pytest.fixture
def marlin_weights_loader():
return MarlinWeightsLoader(bits=4, is_marlin_24=False)
dummy_file_system = {
"test_weights": {
"layer.0.weight": torch.tensor(
[
[1, 2],
[3, 4],
],
dtype=torch.float32,
),
},
"test_weights_2": {
"layer.1337.weight": torch.tensor(
[
[1, 2, 3, 4],
[5, 6, 7, 8],
],
dtype=torch.float32,
),
},
"test_get_weights_col_packed": {
"weight.weight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
},
"test_get_multi_weights_col": {
"weight.weight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
},
"test_get_weights_row": {
"weight.weight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
},
"test_get_weights_col_gptq": {
"weight.qweight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
"weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32),
"weight.qzeros": torch.tensor(
[
[0, 1],
[1, 0],
],
dtype=torch.int32,
),
"weight.scales": torch.tensor(
[
[100.0, 100.0],
[100.0, 100.0],
],
dtype=torch.float16,
),
"gptq_bits": torch.tensor([8], dtype=torch.float32),
"gptq_groupsize": torch.tensor([2], dtype=torch.float32),
},
"test_get_weights_col_marlin": {
"weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
"weight.s": torch.tensor([[0.5000], [0.2500]], dtype=torch.float16),
},
"test_get_weights_row_gptq": {
"weight.qweight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.int32,
),
"weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32),
"weight.qzeros": torch.tensor(
[
[0, 1],
[1, 0],
],
dtype=torch.int32,
),
"weight.scales": torch.tensor(
[
[100.0, 100.0],
[100.0, 100.0],
],
dtype=torch.float16,
),
"gptq_bits": torch.tensor([8], dtype=torch.float32),
"gptq_groupsize": torch.tensor([2], dtype=torch.float32),
},
"test_get_multi_weights_col_gptq": {
"weight.qweight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.int32,
),
"weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32),
"weight.qzeros": torch.tensor(
[
[0, 1],
[1, 0],
],
dtype=torch.int32,
),
"weight.scales": torch.tensor(
[
[100.0, 100.0],
[100.0, 100.0],
],
dtype=torch.float16,
),
"gptq_bits": torch.tensor([8], dtype=torch.float32),
"gptq_groupsize": torch.tensor([2], dtype=torch.float32),
},
"test_get_weights_col_packed_gptq": {
"weight.qweight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.int32,
),
"weight.g_idx": torch.tensor([0, 1, 0, 1], dtype=torch.int32),
"weight.qzeros": torch.tensor(
[
[0, 1],
[1, 0],
],
dtype=torch.int32,
),
"weight.scales": torch.tensor(
[
[100.0, 100.0],
[100.0, 100.0],
],
dtype=torch.float16,
),
"gptq_bits": torch.tensor([8], dtype=torch.float32),
"gptq_groupsize": torch.tensor([2], dtype=torch.float32),
},
"test_get_weights_col_packed_exl2": {
"weight.q_weight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.int32,
),
"weight.q_scale": torch.tensor([8], dtype=torch.int32),
"weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32),
"weight.q_scale_max": torch.tensor([100], dtype=torch.float16),
"weight.q_groups": torch.tensor([4], dtype=torch.int16),
},
"test_get_weights_row_exl2": {
"weight.q_weight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.int32,
),
"weight.q_scale": torch.tensor([8], dtype=torch.int32),
"weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32),
"weight.q_scale_max": torch.tensor([100], dtype=torch.float16),
"weight.q_groups": torch.tensor([4], dtype=torch.int16),
},
"test_get_multi_weights_col_exl2": {
"weight.q_weight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.int32,
),
"weight.q_scale": torch.tensor([8], dtype=torch.int32),
"weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32),
"weight.q_scale_max": torch.tensor([100], dtype=torch.float16),
"weight.q_groups": torch.tensor([4], dtype=torch.int16),
},
"test_get_weights_col_exl2": {
"weight.q_weight": torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.int32,
),
"weight.q_scale": torch.tensor([8], dtype=torch.int32),
"weight.q_invperm": torch.tensor([1, 0, 3, 2], dtype=torch.int32),
"weight.q_scale_max": torch.tensor([100], dtype=torch.float16),
"weight.q_groups": torch.tensor([4], dtype=torch.int16),
},
"test_get_weights_row_marlin": {
"weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
"weight.s": torch.tensor([[0.5], [0.25]], dtype=torch.float16),
},
"test_get_multi_weights_col_marlin": {
"weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
"weight.s": torch.tensor([[0.5], [0.25]], dtype=torch.float16),
},
"test_get_weights_col_packed_marlin": {
"weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
"weight.s": torch.tensor([[0.5], [0.25]], dtype=torch.float16),
},
}
class MockSlice:
def __init__(self, tensor):
self.tensor = tensor
def get_shape(self):
return self.tensor.shape
def __getitem__(self, idx):
return self.tensor[idx]
def mock_get_slice(tensor_name, filename):
tensor = dummy_file_system[filename][tensor_name]
return MockSlice(tensor)
def mock_handle(filename, device, dtype):
return SimpleNamespace(
get_slice=lambda tensor_name: mock_get_slice(tensor_name, filename)
)
class MockSafeOpen:
def __init__(self, filename, framework, dummy_fs):
self.filename = filename
self.framework = framework
self.dummy_fs = dummy_fs
def keys(self):
return list(self.dummy_fs[self.filename].keys())
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
class MockWeights(Weights):
def __init__(
self,
filenames: List[Union[Path, str]],
device,
dtype,
process_group,
dummy_fs,
aliases: Optional[Dict[str, List[str]]] = None,
prefix: Optional[str] = None,
weights_loader: Optional[WeightsLoader] = None,
):
routing = {}
self.dummy_fs = dummy_fs
for filename in filenames:
with MockSafeOpen(filename, framework="pytorch", dummy_fs=dummy_fs) as f:
for k in f.keys():
if k in routing:
raise RuntimeError(
f"Key {k} was found in multiple files: {filename} and {routing[k]}"
)
routing[k] = filename
if aliases is None:
aliases = {}
self.aliases = aliases
self.routing = routing
self.device = device
self.dtype = dtype
self.process_group = process_group
self.prefix = prefix
self.weights_loader = (
# We don't need to get linear layers, so just wrap raw tensors.
DefaultWeightsLoader(lambda x: x)
if weights_loader is None
else weights_loader
)
self._handles = {}
def _get_handle(self, filename: Union[Path, str]):
if filename in self._handles:
return self._handles[filename]
else:
handle = mock_handle(filename, self.device, self.dtype)
self._handles[filename] = handle
return handle
def get_shape(self, tensor_name: str):
filename, _ = self.get_filename(tensor_name)
handle = self._get_handle(filename)
return handle.get_slice(tensor_name).get_shape()
def get_tensor(self, tensor_name: str):
filename, _ = self.get_filename(tensor_name)
handle = self._get_handle(filename)
return handle.get_slice(tensor_name).tensor
dummy_process_group = SimpleNamespace(rank=lambda: 0, size=lambda: 1)
def test_weights():
weights = MockWeights(
[
"test_weights",
"test_weights_2",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
)
assert weights.get_shape("layer.0.weight") == (2, 2)
assert weights.get_tensor("layer.1337.weight").shape == (2, 4)
def test_get_tensor():
weights = MockWeights(
[
"test_weights",
"test_weights_2",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
)
assert torch.allclose(
weights.get_tensor("layer.0.weight"),
torch.tensor(
[
[1, 2],
[3, 4],
],
dtype=torch.float32,
),
)
assert torch.allclose(
weights.get_tensor("layer.1337.weight"),
torch.tensor(
[
[1, 2, 3, 4],
[5, 6, 7, 8],
],
dtype=torch.float32,
),
)
def test_get_weights_col_packed():
weights = MockWeights(
[
"test_get_weights_col_packed",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
)
prefix = "weight"
block_sizes = 1
w = weights.get_weights_col_packed(
prefix=prefix,
block_sizes=block_sizes,
)
assert torch.allclose(
w,
torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
)
def test_get_weights_col_packed_block_size():
weights = MockWeights(
[
"test_get_weights_col_packed",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
)
prefix = "weight"
block_sizes = 2
w = weights.get_weights_col_packed(
prefix=prefix,
block_sizes=block_sizes,
)
assert torch.allclose(
w,
torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
)
def test_get_weights_col_packed_block_size_arr():
weights = MockWeights(
[
"test_get_weights_col_packed",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
)
prefix = "weight"
block_sizes = [1, 1]
w = weights.get_weights_col_packed(
prefix=prefix,
block_sizes=block_sizes,
)
assert torch.allclose(
w,
torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
)
def test_get_multi_weights_col():
weights = MockWeights(
[
"test_get_multi_weights_col",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
)
prefixes = ["weight", "weight"]
w = weights.get_multi_weights_col(
prefixes=prefixes,
dim=0,
)
assert torch.allclose(
w,
torch.tensor(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
[1, 2],
[3, 4],
[5, 6],
[7, 8],
],
dtype=torch.float32,
),
)
def test_get_weights_row():
weights = MockWeights(
[
"test_get_weights_row",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
)
prefix = "weight"
w = weights.get_weights_row(
prefix=prefix,
)
assert torch.allclose(
w,
torch.tensor(
[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]],
dtype=torch.float32,
),
)
# test_get_weights_col
def test_get_weights_col_awq(gptq_weights_loader_awq):
weights = MockWeights(
[
"test_get_weights_col_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader_awq,
)
prefix = "weight"
w = weights.get_weights_col(
prefix=prefix,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor(
[[100.0, 100.0], [100.0, 100.0]],
dtype=torch.float16,
),
g_idx=None,
bits=8.0,
groupsize=2.0,
use_awq_kernel=True,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
def test_get_weights_col_gtpq(gptq_weights_loader):
weights = MockWeights(
[
"test_get_weights_col_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader,
)
prefix = "weight"
w = weights.get_weights_col(
prefix=prefix,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16),
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
bits=8.0,
groupsize=2.0,
use_awq_kernel=False,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
def test_get_weights_col_exl2():
weights = MockWeights(
[
"test_get_weights_col_exl2",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=Exl2WeightsLoader(),
)
prefix = "weight"
w = weights.get_weights_col(
prefix=prefix,
)
scaled_scale_max = 0.3906 * 256
expected_weight = Exl2Weight(
q_weight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
q_scale=torch.tensor([8], dtype=torch.int32),
q_invperm=torch.tensor([1, 0, 3, 2], dtype=torch.int16),
q_scale_max=torch.tensor([scaled_scale_max], dtype=torch.float16),
q_groups=torch.tensor([4], dtype=torch.int16),
)
assert torch.allclose(w.q_weight, expected_weight.q_weight), "q_weight mismatch"
assert torch.allclose(w.q_scale, expected_weight.q_scale), "q_scale mismatch"
assert torch.allclose(w.q_invperm, expected_weight.q_invperm), "q_invperm mismatch"
assert torch.allclose(
w.q_scale_max, expected_weight.q_scale_max
), "q_scale_max mismatch"
assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch"
def test_get_weights_col_marlin(marlin_weights_loader):
weights = MockWeights(
[
"test_get_weights_col_marlin",
],
device="cpu",
dtype=torch.float16,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=marlin_weights_loader,
)
prefix = "weight"
w = weights.get_weights_col(
prefix=prefix,
)
expected_weight = MarlinWeight(
B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16),
)
assert torch.allclose(w.B, expected_weight.B), "B mismatch"
assert torch.allclose(w.s, expected_weight.s), "s mismatch"
# test_get_weights_col_packed
def test_get_weights_col_packed_awq(gptq_weights_loader_awq):
weights = MockWeights(
[
"test_get_weights_col_packed_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader_awq,
)
prefix = "weight"
block_sizes = 1
w = weights.get_weights_col_packed(
prefix=prefix,
block_sizes=block_sizes,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16),
g_idx=None,
bits=8.0,
groupsize=2.0,
use_awq_kernel=True,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
@pytest.mark.skip(reason="Review expected functionality")
def test_get_weights_col_packed_exl2():
weights = MockWeights(
[
"test_get_weights_col_packed_exl2",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=Exl2WeightsLoader(),
)
prefix = "weight"
block_sizes = 1
w = weights.get_weights_col_packed(
prefix=prefix,
block_sizes=block_sizes,
)
scaled_scale_max = 0.3906 * 256
expected_weight = Exl2Weight(
q_weight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
q_scale=torch.tensor([8], dtype=torch.int32),
q_invperm=torch.tensor([1], dtype=torch.int16),
q_scale_max=torch.tensor([scaled_scale_max], dtype=torch.float16),
q_groups=torch.tensor([4], dtype=torch.int16),
)
assert torch.allclose(w.q_weight, expected_weight.q_weight), "q_weight mismatch"
assert torch.allclose(w.q_scale, expected_weight.q_scale), "q_scale mismatch"
assert torch.allclose(w.q_invperm, expected_weight.q_invperm), "q_invperm mismatch"
assert torch.allclose(
w.q_scale_max, expected_weight.q_scale_max
), "q_scale_max mismatch"
assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch"
def test_get_weights_col_packed_gptq(gptq_weights_loader):
weights = MockWeights(
[
"test_get_weights_col_packed_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader,
)
prefixes = ["weight"]
w = weights.get_multi_weights_col(
prefixes=prefixes,
dim=0,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16),
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
bits=8.0,
groupsize=2.0,
use_awq_kernel=False,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
def test_get_weights_col_packed_marlin(marlin_weights_loader):
weights = MockWeights(
[
"test_get_weights_col_packed_marlin",
],
device="cpu",
dtype=torch.float16,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=marlin_weights_loader,
)
prefix = "weight"
w = weights.get_multi_weights_col(
prefixes=[prefix],
dim=0,
)
expected_weight = MarlinWeight(
B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16),
)
print(expected_weight)
assert torch.allclose(w.B, expected_weight.B), "B mismatch"
assert torch.allclose(w.s, expected_weight.s), "s mismatch"
# test_get_multi_weights_col
def test_get_multi_weights_col_awq(gptq_weights_loader_awq):
weights = MockWeights(
[
"test_get_multi_weights_col_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader_awq,
)
prefixes = ["weight"]
w = weights.get_multi_weights_col(
prefixes=prefixes,
dim=0,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16),
g_idx=None,
bits=8.0,
groupsize=2.0,
use_awq_kernel=True,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
def test_get_multi_weights_col_exl2():
weights = MockWeights(
[
"test_get_multi_weights_col_exl2",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=Exl2WeightsLoader(),
)
prefix = "weight"
try:
weights.get_multi_weights_col(
prefixes=[prefix],
dim=0,
)
except ValueError as e:
assert e.args[0] == "get_multi_weights_col is not supported for exl2"
def test_get_multi_weights_col_gptq(gptq_weights_loader):
weights = MockWeights(
[
"test_get_multi_weights_col_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader,
)
prefixes = ["weight"]
w = weights.get_multi_weights_col(
prefixes=prefixes,
dim=0,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16),
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
bits=8.0,
groupsize=2.0,
use_awq_kernel=False,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
def test_get_multi_weights_col_marlin(marlin_weights_loader):
weights = MockWeights(
[
"test_get_multi_weights_col_marlin",
],
device="cpu",
dtype=torch.float16,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=marlin_weights_loader,
)
prefix = "weight"
w = weights.get_multi_weights_col(
prefixes=[prefix],
dim=0,
)
expected_weight = MarlinWeight(
B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16),
)
assert torch.allclose(w.B, expected_weight.B), "B mismatch"
assert torch.allclose(w.s, expected_weight.s), "s mismatch"
# test_get_weights_row
def test_get_weights_row_awq(gptq_weights_loader_awq):
weights = MockWeights(
[
"test_get_weights_row_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader_awq,
)
prefix = "weight"
w = weights.get_weights_row(
prefix=prefix,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16),
g_idx=None,
bits=8.0,
groupsize=2.0,
use_awq_kernel=True,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
def test_get_weights_row_exl2():
weights = MockWeights(
[
"test_get_weights_row_exl2",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=Exl2WeightsLoader(),
)
prefix = "weight"
w = weights.get_weights_row(
prefix=prefix,
)
print(w)
scaled_scale_max = 0.3906 * 256
expected_weight = Exl2Weight(
q_weight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
q_scale=torch.tensor([8], dtype=torch.int32),
q_invperm=torch.tensor([1, 0, 3, 2], dtype=torch.int16),
q_scale_max=torch.tensor([scaled_scale_max], dtype=torch.float16),
q_groups=torch.tensor([4], dtype=torch.int16),
)
assert torch.allclose(w.q_weight, expected_weight.q_weight), "q_weight mismatch"
assert torch.allclose(w.q_scale, expected_weight.q_scale), "q_scale mismatch"
assert torch.allclose(w.q_invperm, expected_weight.q_invperm), "q_invperm mismatch"
assert torch.allclose(
w.q_scale_max, expected_weight.q_scale_max
), "q_scale_max mismatch"
assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch"
def test_get_weights_row_gptq(gptq_weights_loader):
weights = MockWeights(
[
"test_get_weights_row_gptq",
],
device="cpu",
dtype=torch.float32,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=gptq_weights_loader,
)
prefix = "weight"
w = weights.get_weights_row(
prefix=prefix,
)
expected_weight = GPTQWeight(
qweight=torch.tensor([[1, 2], [3, 4], [5, 6], [7, 8]], dtype=torch.int32),
qzeros=torch.tensor([[0, 1], [1, 0]], dtype=torch.int32),
scales=torch.tensor([[100.0, 100.0], [100.0, 100.0]], dtype=torch.float16),
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
bits=8.0,
groupsize=2.0,
use_awq_kernel=False,
use_exllama=False,
)
assert torch.allclose(w.qweight, expected_weight.qweight), "qweight mismatch"
assert torch.allclose(w.qzeros, expected_weight.qzeros), "qzeros mismatch"
assert torch.allclose(w.scales, expected_weight.scales), "scales mismatch"
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
assert w.bits == expected_weight.bits, "bits mismatch"
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
def test_get_weights_row_marlin(marlin_weights_loader):
weights = MockWeights(
[
"test_get_weights_row_marlin",
],
device="cpu",
dtype=torch.float16,
process_group=dummy_process_group,
dummy_fs=dummy_file_system,
weights_loader=marlin_weights_loader,
)
prefix = "weight"
w = weights.get_weights_row(
prefix=prefix,
)
expected_weight = MarlinWeight(
B=torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
s=torch.tensor([[0.5000], [0.2500]], dtype=torch.float16),
)
assert torch.allclose(w.B, expected_weight.B), "B mismatch"
assert torch.allclose(w.s, expected_weight.s), "s mismatch"