232 lines
9.4 KiB
Python
232 lines
9.4 KiB
Python
|
import torch
|
||
|
import torch.distributed
|
||
|
|
||
|
from typing import List, Optional
|
||
|
|
||
|
from accelerate import init_empty_weights
|
||
|
from safetensors import safe_open
|
||
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||
|
from transformers.models.bloom.parallel_layers import (
|
||
|
TensorParallelColumnLinear,
|
||
|
TensorParallelEmbedding,
|
||
|
TensorParallelRowLinear,
|
||
|
)
|
||
|
|
||
|
from text_generation.models import Model
|
||
|
from text_generation.utils import (
|
||
|
initialize_torch_distributed,
|
||
|
weight_files,
|
||
|
download_weights,
|
||
|
)
|
||
|
|
||
|
HAS_BITS_AND_BYTES = True
|
||
|
try:
|
||
|
import bitsandbytes as bnb
|
||
|
from bitsandbytes.nn import Int8Params
|
||
|
except Exception as e:
|
||
|
HAS_BITS_AND_BYTES = False
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
|
||
|
|
||
|
class BLOOMSharded(Model):
|
||
|
def __init__(self, model_name: str, quantize: bool = False):
|
||
|
super(Model, self).__init__()
|
||
|
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||
|
self.master = self.rank == 0
|
||
|
if torch.cuda.is_available():
|
||
|
self.device = torch.device(f"cuda:{self.rank}")
|
||
|
dtype = torch.float16
|
||
|
else:
|
||
|
self.device = torch.device("cpu")
|
||
|
dtype = torch.float32
|
||
|
|
||
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||
|
|
||
|
config = AutoConfig.from_pretrained(
|
||
|
model_name, slow_but_exact=False, tp_parallel=True
|
||
|
)
|
||
|
config.pad_token_id = 3
|
||
|
self.num_heads = config.n_head // self.process_group.size()
|
||
|
|
||
|
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||
|
# in PyTorch 1.12 and later.
|
||
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||
|
|
||
|
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
||
|
torch.backends.cudnn.allow_tf32 = True
|
||
|
|
||
|
# Only download weights for small models
|
||
|
if self.master and model_name == "bigscience/bloom-560m":
|
||
|
download_weights(model_name, extension=".safetensors")
|
||
|
|
||
|
torch.distributed.barrier(group=self.process_group)
|
||
|
filenames = weight_files(model_name, extension=".safetensors")
|
||
|
|
||
|
with init_empty_weights():
|
||
|
model = AutoModelForCausalLM.from_config(config)
|
||
|
|
||
|
torch.distributed.barrier(group=self.process_group)
|
||
|
self.load_weights(
|
||
|
model,
|
||
|
filenames,
|
||
|
quantize=quantize,
|
||
|
device=self.device,
|
||
|
rank=self.rank,
|
||
|
world_size=self.world_size,
|
||
|
)
|
||
|
self.model = model.eval().to(dtype)
|
||
|
torch.distributed.barrier(group=self.process_group)
|
||
|
|
||
|
@staticmethod
|
||
|
def load_weights(
|
||
|
model,
|
||
|
filenames: List[str],
|
||
|
quantize: bool,
|
||
|
device: torch.device,
|
||
|
rank: int,
|
||
|
world_size: int,
|
||
|
):
|
||
|
parameters = dict(model.named_parameters())
|
||
|
for file in filenames:
|
||
|
with safe_open(
|
||
|
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||
|
) as f:
|
||
|
for name in f.keys():
|
||
|
full_name = f"transformer.{name}"
|
||
|
|
||
|
module_name, param_name = full_name.rsplit(".", 1)
|
||
|
module = model.get_submodule(module_name)
|
||
|
current_tensor = parameters[full_name]
|
||
|
|
||
|
slice_ = f.get_slice(name)
|
||
|
|
||
|
if isinstance(module, TensorParallelColumnLinear):
|
||
|
if param_name == "weight":
|
||
|
size = slice_.get_shape()[0]
|
||
|
block_size = size // world_size
|
||
|
start = rank * block_size
|
||
|
stop = (rank + 1) * block_size
|
||
|
tensor = slice_[start:stop]
|
||
|
tensor = tensor.transpose(1, 0)
|
||
|
else:
|
||
|
size = slice_.get_shape()[0]
|
||
|
block_size = size // world_size
|
||
|
start = rank * block_size
|
||
|
stop = (rank + 1) * block_size
|
||
|
tensor = slice_[start:stop]
|
||
|
elif isinstance(module, TensorParallelRowLinear):
|
||
|
if param_name == "weight":
|
||
|
size = slice_.get_shape()[1]
|
||
|
block_size = size // world_size
|
||
|
start = rank * block_size
|
||
|
stop = (rank + 1) * block_size
|
||
|
tensor = slice_[:, start:stop]
|
||
|
tensor = tensor.transpose(1, 0)
|
||
|
else:
|
||
|
tensor = slice_[:]
|
||
|
# XXX: Hack for Rowlinear to add the bias only once.
|
||
|
if rank != 0:
|
||
|
tensor = torch.zeros_like(tensor)
|
||
|
elif isinstance(module, TensorParallelEmbedding):
|
||
|
size = slice_.get_shape()[0]
|
||
|
block_size = size // world_size
|
||
|
start = rank * block_size
|
||
|
stop = (rank + 1) * block_size
|
||
|
tensor = slice_[start:stop]
|
||
|
else:
|
||
|
tensor = slice_[:]
|
||
|
|
||
|
if current_tensor.shape != tensor.shape:
|
||
|
raise ValueError(
|
||
|
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||
|
)
|
||
|
|
||
|
tensor = tensor.contiguous()
|
||
|
|
||
|
if quantize:
|
||
|
if not HAS_BITS_AND_BYTES:
|
||
|
raise ImportError(
|
||
|
"bitsandbytes is not available on your machine either because it is not installed "
|
||
|
"or you don't have a GPU.\n"
|
||
|
"You can install it with `pip install bitsandbytes`."
|
||
|
)
|
||
|
|
||
|
if (
|
||
|
type(module)
|
||
|
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||
|
and param_name == "weight"
|
||
|
):
|
||
|
tensor = Int8Params(
|
||
|
tensor.transpose(1, 0),
|
||
|
has_fp16_weights=False,
|
||
|
requires_grad=False,
|
||
|
).to(device)
|
||
|
state = bnb.MatmulLtState()
|
||
|
state.threshold = 6.0
|
||
|
state.has_fp16_weights = False
|
||
|
state.memory_efficient_backward = False
|
||
|
state.use_pool = True
|
||
|
state.CB = tensor.CB
|
||
|
state.SCB = tensor.SCB
|
||
|
tensor.CB = None
|
||
|
tensor.SCB = None
|
||
|
|
||
|
def replace_linear(state, in_features, out_features):
|
||
|
def linear(input, weight, bias):
|
||
|
size_out = input.size()[:-1] + (out_features,)
|
||
|
input = input.view(-1, in_features)
|
||
|
out = torch.empty(
|
||
|
size_out, device=input.device, dtype=input.dtype
|
||
|
)
|
||
|
out = bnb.matmul(
|
||
|
input,
|
||
|
weight,
|
||
|
out=out.view(-1, out_features),
|
||
|
state=state,
|
||
|
threshold=state.threshold,
|
||
|
bias=bias,
|
||
|
)
|
||
|
|
||
|
if state.CB is not None:
|
||
|
# we converted 8-bit row major to turing/ampere format
|
||
|
# in the first inference pass
|
||
|
# we no longer need the row-major weight
|
||
|
del state.CB
|
||
|
weight.data = state.CxB
|
||
|
|
||
|
return out.view(size_out)
|
||
|
|
||
|
return linear
|
||
|
|
||
|
module.linear = replace_linear(
|
||
|
state, module.in_features, module.out_features
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
tensor = tensor.to(device)
|
||
|
|
||
|
module._parameters[param_name] = tensor
|
||
|
if name == "word_embeddings.weight":
|
||
|
model.lm_head._parameters["weight"] = tensor
|
||
|
|
||
|
def forward(self, input_ids, attention_mask, past_key_values: Optional = None):
|
||
|
outputs = self.model.forward(
|
||
|
input_ids=input_ids,
|
||
|
attention_mask=attention_mask,
|
||
|
past_key_values=past_key_values,
|
||
|
use_cache=True,
|
||
|
)
|
||
|
|
||
|
# Logits are sharded, so we need to gather them
|
||
|
logits_shard = outputs.logits[:, -1, :].contiguous()
|
||
|
|
||
|
batch_size, vocab_shard_size = logits_shard.shape
|
||
|
vocab_size = self.world_size * vocab_shard_size
|
||
|
logits = [torch.empty_like(logits_shard) for _ in range(self.world_size)]
|
||
|
torch.distributed.all_gather(logits, logits_shard, group=self.process_group)
|
||
|
logits = torch.cat(logits, dim=1).view(batch_size, 1, vocab_size)
|
||
|
|
||
|
outputs.logits = logits
|
||
|
return outputs
|