2022-10-28 11:24:00 -06:00
|
|
|
import torch
|
|
|
|
import torch.distributed
|
|
|
|
|
|
|
|
from typing import List, Tuple, Optional
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
|
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|
|
|
|
|
|
|
from text_generation.models.types import Batch, GeneratedText
|
|
|
|
|
|
|
|
|
|
|
|
class Model:
|
|
|
|
def __init__(self, model_name: str):
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
self.device = torch.device("cuda")
|
|
|
|
dtype = torch.float16
|
|
|
|
else:
|
|
|
|
self.device = torch.device("cpu")
|
|
|
|
dtype = torch.float32
|
|
|
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
|
|
|
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(
|
2022-11-02 10:29:56 -06:00
|
|
|
model_name, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() else None
|
2022-10-28 11:24:00 -06:00
|
|
|
).eval()
|
|
|
|
|
|
|
|
self.num_heads = self.model.config.num_attention_heads
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self, input_ids, attention_mask, past_key_values: Optional = None
|
|
|
|
) -> CausalLMOutputWithPast:
|
|
|
|
# Model Forward
|
|
|
|
return self.model.forward(
|
|
|
|
input_ids=input_ids,
|
|
|
|
attention_mask=attention_mask,
|
|
|
|
past_key_values=past_key_values,
|
|
|
|
use_cache=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
def generate_token(
|
|
|
|
self, batch: Batch
|
|
|
|
) -> Tuple[List[GeneratedText], Optional[Batch]]:
|
|
|
|
# For some reason, inference_mode does not work well with GLOO which we use on CPU
|
|
|
|
context_manager = (
|
|
|
|
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
|
|
|
|
)
|
|
|
|
with context_manager():
|
|
|
|
outputs = self.forward(**batch.input_ids)
|
|
|
|
|
|
|
|
# List of indices to cache
|
|
|
|
next_batch_keep_indices = []
|
|
|
|
next_batch_past_keep_indices = []
|
|
|
|
|
|
|
|
# New input_ids for next forward
|
|
|
|
next_batch_input_ids = []
|
|
|
|
next_batch_all_input_ids = []
|
|
|
|
next_all_input_lengths = []
|
|
|
|
|
|
|
|
next_batch_size = 0
|
|
|
|
next_batch_max_sequence_length = 0
|
|
|
|
|
|
|
|
# Finished requests
|
|
|
|
generated_texts: List[GeneratedText] = []
|
|
|
|
|
|
|
|
# Zipped iterator
|
|
|
|
iterator = zip(
|
|
|
|
batch.requests,
|
|
|
|
batch.all_input_lengths,
|
|
|
|
outputs.logits,
|
|
|
|
batch.next_token_choosers,
|
|
|
|
batch.stopping_criterias,
|
|
|
|
batch.all_input_ids,
|
|
|
|
)
|
|
|
|
|
|
|
|
# For each member of the batch
|
|
|
|
for i, (
|
|
|
|
request,
|
|
|
|
input_length,
|
|
|
|
logits,
|
|
|
|
next_token_chooser,
|
|
|
|
stopping_criteria,
|
|
|
|
all_tokens,
|
|
|
|
) in enumerate(iterator):
|
|
|
|
# Select next token
|
|
|
|
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
|
|
|
|
|
|
|
|
# Append next token to all tokens
|
|
|
|
all_tokens = torch.cat([all_tokens, next_token])
|
|
|
|
|
|
|
|
# Evaluate stopping criteria
|
|
|
|
if stopping_criteria(all_tokens):
|
|
|
|
# Decode all tokens
|
|
|
|
output = self.tokenizer.decode(
|
|
|
|
all_tokens.squeeze(-1), skip_special_tokens=True
|
|
|
|
)
|
|
|
|
# Add to the list of finished generations with the original request
|
|
|
|
generated_texts.append(GeneratedText(request, output))
|
|
|
|
# add to the next batch
|
|
|
|
else:
|
|
|
|
next_batch_keep_indices.append(i)
|
|
|
|
# past_key_values is of shape [batch_size * num_heads, ...]
|
|
|
|
# so we need to take into account the `num_heads` stride here
|
|
|
|
next_batch_past_keep_indices.extend(
|
|
|
|
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
|
|
|
|
)
|
|
|
|
next_batch_input_ids.append(next_token)
|
|
|
|
next_batch_all_input_ids.append(all_tokens)
|
|
|
|
next_batch_size += 1
|
|
|
|
new_input_length = input_length + 1
|
|
|
|
next_all_input_lengths.append(new_input_length)
|
|
|
|
next_batch_max_sequence_length = max(
|
|
|
|
next_batch_max_sequence_length, new_input_length
|
|
|
|
)
|
|
|
|
|
|
|
|
# We finished all generations in the batch; there is no next batch
|
|
|
|
if not next_batch_keep_indices:
|
|
|
|
return generated_texts, None
|
|
|
|
|
|
|
|
# If we finished at least one generation
|
|
|
|
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
|
|
|
|
if generated_texts:
|
|
|
|
# Apply indices to attention mask, past key values and other items that need to be cached
|
|
|
|
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
|
|
|
|
next_batch_keep_indices
|
|
|
|
]
|
|
|
|
next_batch_input_ids["past_key_values"] = [
|
|
|
|
(
|
|
|
|
keys[next_batch_past_keep_indices],
|
|
|
|
values[next_batch_past_keep_indices],
|
|
|
|
)
|
|
|
|
for keys, values in outputs["past_key_values"]
|
|
|
|
]
|
|
|
|
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
|
|
|
next_batch_next_token_choosers = [
|
|
|
|
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
|
|
|
]
|
|
|
|
next_batch_stopping_criterias = [
|
|
|
|
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
|
|
|
|
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
|
|
|
|
next_batch_requests = batch.requests
|
|
|
|
next_batch_next_token_choosers = batch.next_token_choosers
|
|
|
|
next_batch_stopping_criterias = batch.stopping_criterias
|
|
|
|
|
|
|
|
# Update attention_mask with padding as we added a new token to input_ids
|
|
|
|
next_batch_input_ids["attention_mask"] = torch.cat(
|
|
|
|
[
|
|
|
|
next_batch_input_ids["attention_mask"],
|
|
|
|
torch.ones((next_batch_size, 1)).to(self.device),
|
|
|
|
],
|
|
|
|
dim=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
next_batch = Batch(
|
|
|
|
batch_id=batch.batch_id,
|
|
|
|
requests=next_batch_requests,
|
|
|
|
all_input_lengths=next_all_input_lengths,
|
|
|
|
input_ids=next_batch_input_ids,
|
|
|
|
all_input_ids=next_batch_all_input_ids,
|
|
|
|
next_token_choosers=next_batch_next_token_choosers,
|
|
|
|
stopping_criterias=next_batch_stopping_criterias,
|
|
|
|
size=next_batch_size,
|
|
|
|
max_sequence_length=next_batch_max_sequence_length,
|
|
|
|
)
|
|
|
|
return generated_texts, next_batch
|