hf_text-generation-inference/server/text_generation/models/model.py

167 lines
6.4 KiB
Python
Raw Normal View History

import torch
import torch.distributed
from typing import List, Tuple, Optional
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from text_generation.models.types import Batch, GeneratedText
class Model:
def __init__(self, model_name: str):
if torch.cuda.is_available():
self.device = torch.device("cuda")
dtype = torch.float16
else:
self.device = torch.device("cpu")
dtype = torch.float32
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() else None
).eval()
self.num_heads = self.model.config.num_attention_heads
def forward(
self, input_ids, attention_mask, past_key_values: Optional = None
) -> CausalLMOutputWithPast:
# Model Forward
return self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
def generate_token(
self, batch: Batch
) -> Tuple[List[GeneratedText], Optional[Batch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
outputs = self.forward(**batch.input_ids)
# List of indices to cache
next_batch_keep_indices = []
next_batch_past_keep_indices = []
# New input_ids for next forward
next_batch_input_ids = []
next_batch_all_input_ids = []
next_all_input_lengths = []
next_batch_size = 0
next_batch_max_sequence_length = 0
# Finished requests
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.all_input_lengths,
outputs.logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
logits,
next_token_chooser,
stopping_criteria,
all_tokens,
) in enumerate(iterator):
# Select next token
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
# Append next token to all tokens
all_tokens = torch.cat([all_tokens, next_token])
# Evaluate stopping criteria
if stopping_criteria(all_tokens):
# Decode all tokens
output = self.tokenizer.decode(
all_tokens.squeeze(-1), skip_special_tokens=True
)
# Add to the list of finished generations with the original request
generated_texts.append(GeneratedText(request, output))
# add to the next batch
else:
next_batch_keep_indices.append(i)
# past_key_values is of shape [batch_size * num_heads, ...]
# so we need to take into account the `num_heads` stride here
next_batch_past_keep_indices.extend(
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
)
next_batch_input_ids.append(next_token)
next_batch_all_input_ids.append(all_tokens)
next_batch_size += 1
new_input_length = input_length + 1
next_all_input_lengths.append(new_input_length)
next_batch_max_sequence_length = max(
next_batch_max_sequence_length, new_input_length
)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
# If we finished at least one generation
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
if generated_texts:
# Apply indices to attention mask, past key values and other items that need to be cached
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
next_batch_keep_indices
]
next_batch_input_ids["past_key_values"] = [
(
keys[next_batch_past_keep_indices],
values[next_batch_past_keep_indices],
)
for keys, values in outputs["past_key_values"]
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
next_batch_input_ids["attention_mask"] = torch.cat(
[
next_batch_input_ids["attention_mask"],
torch.ones((next_batch_size, 1)).to(self.device),
],
dim=1,
)
next_batch = Batch(
batch_id=batch.batch_id,
requests=next_batch_requests,
all_input_lengths=next_all_input_lengths,
input_ids=next_batch_input_ids,
all_input_ids=next_batch_all_input_ids,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_sequence_length=next_batch_max_sequence_length,
)
return generated_texts, next_batch