125 lines
3.4 KiB
Python
125 lines
3.4 KiB
Python
|
import os
|
||
|
import torch
|
||
|
|
||
|
from loguru import logger
|
||
|
|
||
|
if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false":
|
||
|
raise ImportError("`USE_FLASH_ATTENTION` is false.")
|
||
|
|
||
|
if not torch.cuda.is_available():
|
||
|
raise ImportError("CUDA is not available")
|
||
|
|
||
|
major, minor = torch.cuda.get_device_capability()
|
||
|
is_sm75 = major == 7 and minor == 5
|
||
|
is_sm8x = major == 8 and minor >= 0
|
||
|
is_sm90 = major == 9 and minor == 0
|
||
|
|
||
|
HAS_FLASH_ATTN = False
|
||
|
HAS_FLASH_ATTN_V2 = False
|
||
|
try:
|
||
|
try:
|
||
|
import flash_attn_2_cuda
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Flash Attention V2 is not installed.\n"
|
||
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
||
|
"or install flash attention v2 with `cd server && make install install-flash-attention-v2`"
|
||
|
)
|
||
|
if not (is_sm8x or is_sm90):
|
||
|
raise ImportError(
|
||
|
f"GPU with CUDA capability {major} {minor} is not supported for "
|
||
|
"Flash Attention V2"
|
||
|
)
|
||
|
HAS_FLASH_ATTN_V2 = True
|
||
|
except ImportError as e:
|
||
|
try:
|
||
|
import flash_attn_cuda
|
||
|
except ImportError:
|
||
|
raise ImportError(
|
||
|
"Flash Attention is not installed.\n"
|
||
|
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
|
||
|
"or install flash attention with `cd server && make install install-flash-attention`"
|
||
|
) from e
|
||
|
|
||
|
if not (is_sm75 or is_sm8x or is_sm90):
|
||
|
raise ImportError(
|
||
|
f"GPU with CUDA capability {major} {minor} is not supported"
|
||
|
) from e
|
||
|
logger.warning(f"Unable to use Flash Attention V2: {e}")
|
||
|
HAS_FLASH_ATTN = True
|
||
|
|
||
|
|
||
|
def attention(
|
||
|
q,
|
||
|
k,
|
||
|
v,
|
||
|
out,
|
||
|
cu_seqlens,
|
||
|
max_s,
|
||
|
softmax_scale,
|
||
|
):
|
||
|
if HAS_FLASH_ATTN_V2:
|
||
|
return flash_attn_2_cuda.varlen_fwd(
|
||
|
q,
|
||
|
k,
|
||
|
v,
|
||
|
out,
|
||
|
cu_seqlens,
|
||
|
cu_seqlens,
|
||
|
max_s,
|
||
|
max_s,
|
||
|
0.0,
|
||
|
softmax_scale,
|
||
|
False,
|
||
|
True,
|
||
|
False,
|
||
|
None,
|
||
|
)
|
||
|
|
||
|
if HAS_FLASH_ATTN:
|
||
|
# Flash attention v1 requires q, k and v to have the same number of heads
|
||
|
if k.shape[1] != q.shape[1]:
|
||
|
# MQA expand
|
||
|
if k.shape[1] == 1:
|
||
|
k = k.expand(-1, q.shape[1], -1)
|
||
|
# Grouped attention reshape
|
||
|
else:
|
||
|
original_shape = k.shape
|
||
|
k = (
|
||
|
k.unsqueeze(2)
|
||
|
.expand(-1, -1, q.shape[1] // k.shape[1], -1)
|
||
|
.reshape(original_shape[0], -1, original_shape[2])
|
||
|
)
|
||
|
if v.shape[1] != q.shape[1]:
|
||
|
# MQA expand
|
||
|
if v.shape[1] == 1:
|
||
|
v = v.expand(-1, q.shape[1], -1)
|
||
|
# Grouped attention reshape
|
||
|
else:
|
||
|
original_shape = v.shape
|
||
|
v = (
|
||
|
v.unsqueeze(2)
|
||
|
.expand(-1, -1, q.shape[1] // v.shape[1], -1)
|
||
|
.reshape(original_shape[0], -1, original_shape[2])
|
||
|
)
|
||
|
|
||
|
return flash_attn_cuda.fwd(
|
||
|
q,
|
||
|
k,
|
||
|
v,
|
||
|
out,
|
||
|
cu_seqlens,
|
||
|
cu_seqlens,
|
||
|
max_s,
|
||
|
max_s,
|
||
|
0.0,
|
||
|
softmax_scale,
|
||
|
False,
|
||
|
True,
|
||
|
False,
|
||
|
0,
|
||
|
None,
|
||
|
)
|
||
|
|
||
|
raise NotImplementedError("flash attention is not installed")
|