hf_text-generation-inference/server/text_generation/models/causal_lm.py

39 lines
1.4 KiB
Python
Raw Normal View History

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import Optional, Tuple, List
from text_generation.models import Model
class CausalLM(Model):
def __init__(self, model_name: str):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
else:
device = torch.device("cpu")
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
).eval()
super(CausalLM, self).__init__(tokenizer=tokenizer, num_heads=self.model.config.num_attention_heads, device=device)
def forward(
self, input_ids, attention_mask, past_key_values: Optional = None
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
return outputs.logits, outputs.past_key_values