hf_text-generation-inference/server/text_generation/models/__init__.py

48 lines
1.6 KiB
Python
Raw Normal View History

2023-01-20 04:24:39 -07:00
import torch
from text_generation.models.model import Model
from text_generation.models.causal_lm import CausalLM
2022-12-08 10:49:33 -07:00
from text_generation.models.bloom import BLOOM, BLOOMSharded
from text_generation.models.seq2seq_lm import Seq2SeqLM
2022-12-01 11:31:54 -07:00
from text_generation.models.galactica import Galactica, GalacticaSharded
2023-01-20 04:24:39 -07:00
from text_generation.models.santacoder import SantaCoder
__all__ = [
"Model",
"BLOOM",
"BLOOMSharded",
"CausalLM",
"Seq2SeqLM",
"SantaCoder",
"get_model",
]
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
2023-01-20 04:24:39 -07:00
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
if model_name.startswith("bigscience/bloom"):
if sharded:
2022-11-07 04:53:56 -07:00
return BLOOMSharded(model_name, quantize=quantize)
else:
2022-12-08 10:49:33 -07:00
return BLOOM(model_name, quantize=quantize)
2022-12-01 11:31:54 -07:00
elif model_name.startswith("facebook/galactica"):
if sharded:
return GalacticaSharded(model_name, quantize=quantize)
else:
return Galactica(model_name, quantize=quantize)
2023-01-20 04:24:39 -07:00
elif "santacoder" in model_name:
return SantaCoder(model_name, quantize)
else:
if sharded:
raise ValueError("sharded is not supported for AutoModel")
try:
2022-11-07 04:53:56 -07:00
return CausalLM(model_name, quantize=quantize)
except Exception:
2022-11-07 04:53:56 -07:00
return Seq2SeqLM(model_name, quantize=quantize)