64 lines
2.1 KiB
Python
64 lines
2.1 KiB
Python
|
import torch
|
||
|
import torch.distributed
|
||
|
|
||
|
from transformers import AutoConfig, AutoTokenizer
|
||
|
from typing import Optional, List, Tuple
|
||
|
|
||
|
from text_generation_server.models import CausalLM
|
||
|
from text_generation_server.models.custom_modeling.phi_modeling import PhiConfig, PhiForCausalLM
|
||
|
from text_generation_server.utils import (
|
||
|
initialize_torch_distributed,
|
||
|
weight_files,
|
||
|
Weights,
|
||
|
)
|
||
|
|
||
|
class Phi(CausalLM):
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_id: str,
|
||
|
revision: Optional[str] = None,
|
||
|
quantize: Optional[str] = None,
|
||
|
dtype: Optional[torch.dtype] = None,
|
||
|
trust_remote_code: bool = False,
|
||
|
):
|
||
|
self.process_group, _rank, _world_size = initialize_torch_distributed()
|
||
|
if torch.cuda.is_available():
|
||
|
device = torch.device("cuda")
|
||
|
dtype = torch.float16 if dtype is None else dtype
|
||
|
else:
|
||
|
if quantize:
|
||
|
raise ValueError("quantization is not available on CPU")
|
||
|
|
||
|
device = torch.device("cpu")
|
||
|
dtype = torch.float32 if dtype is None else dtype
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||
|
model_id,
|
||
|
revision=revision,
|
||
|
padding_side="left",
|
||
|
truncation_side="left",
|
||
|
trust_remote_code=trust_remote_code,
|
||
|
)
|
||
|
config = PhiConfig.from_pretrained(
|
||
|
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||
|
)
|
||
|
|
||
|
tokenizer.bos_token_id = config.bos_token_id
|
||
|
tokenizer.eos_token_id = config.eos_token_id
|
||
|
tokenizer.pad_token = tokenizer.eos_token
|
||
|
|
||
|
config.quantize = quantize
|
||
|
torch.distributed.barrier(group=self.process_group)
|
||
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||
|
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
||
|
model = PhiForCausalLM(config, weights)
|
||
|
torch.distributed.barrier(group=self.process_group)
|
||
|
super(CausalLM, self).__init__(
|
||
|
model=model,
|
||
|
tokenizer=tokenizer,
|
||
|
requires_padding=True,
|
||
|
dtype=dtype,
|
||
|
device=device,
|
||
|
)
|
||
|
|