hf_text-generation-inference/server/text_generation_server/utils/peft.py

69 lines
2.1 KiB
Python
Raw Normal View History

feat(server): Add native support for PEFT Lora models (#762) - Will detect `peft` model by finding `adapter_config.json`. - This triggers a totally dedicated `download-weights` path - This path, loads the adapter config, finds the base model_id - It loads the base_model - Then peft_model - Then `merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer.merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer. - The chosen location is a **local folder with the name of the user chosen model id** PROs: - Easier than to expect user to merge manually - Barely any change outside of `download-weights` command. - This means everything will work in a single load. - Should enable out of the box SM + HFE CONs: - Creates a local merged model in unusual location, potentially not saved across docker reloads, or ovewriting some files if the PEFT itself was local and containing other files in addition to the lora Alternatives considered: - Add `local_files_only=True` every where (discard because of massive code change for not a good enough reason) - Return something to `launcher` about the new model-id (a cleaner location for this new model), but it would introduce new communication somewhere where we didn't need it before. - Using the HF cache folder and *stopping* the flow after `download-weights` and asking user to restart with the actual local model location Fix #482 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 09:22:45 -06:00
import os
Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 12:46:27 -06:00
from typing import Union
feat(server): Add native support for PEFT Lora models (#762) - Will detect `peft` model by finding `adapter_config.json`. - This triggers a totally dedicated `download-weights` path - This path, loads the adapter config, finds the base model_id - It loads the base_model - Then peft_model - Then `merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer.merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer. - The chosen location is a **local folder with the name of the user chosen model id** PROs: - Easier than to expect user to merge manually - Barely any change outside of `download-weights` command. - This means everything will work in a single load. - Should enable out of the box SM + HFE CONs: - Creates a local merged model in unusual location, potentially not saved across docker reloads, or ovewriting some files if the PEFT itself was local and containing other files in addition to the lora Alternatives considered: - Add `local_files_only=True` every where (discard because of massive code change for not a good enough reason) - Return something to `launcher` about the new model-id (a cleaner location for this new model), but it would introduce new communication somewhere where we didn't need it before. - Using the HF cache folder and *stopping* the flow after `download-weights` and asking user to restart with the actual local model location Fix #482 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 09:22:45 -06:00
from loguru import logger
import torch
from transformers import AutoTokenizer
from peft import AutoPeftModelForCausalLM, AutoPeftModelForSeq2SeqLM
2023-09-27 04:22:09 -06:00
feat(server): Add native support for PEFT Lora models (#762) - Will detect `peft` model by finding `adapter_config.json`. - This triggers a totally dedicated `download-weights` path - This path, loads the adapter config, finds the base model_id - It loads the base_model - Then peft_model - Then `merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer.merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer. - The chosen location is a **local folder with the name of the user chosen model id** PROs: - Easier than to expect user to merge manually - Barely any change outside of `download-weights` command. - This means everything will work in a single load. - Should enable out of the box SM + HFE CONs: - Creates a local merged model in unusual location, potentially not saved across docker reloads, or ovewriting some files if the PEFT itself was local and containing other files in addition to the lora Alternatives considered: - Add `local_files_only=True` every where (discard because of massive code change for not a good enough reason) - Return something to `launcher` about the new model-id (a cleaner location for this new model), but it would introduce new communication somewhere where we didn't need it before. - Using the HF cache folder and *stopping* the flow after `download-weights` and asking user to restart with the actual local model location Fix #482 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 09:22:45 -06:00
def download_and_unload_peft(model_id, revision, trust_remote_code):
torch_dtype = torch.float16
logger.info("Trying to load a Peft model. It might take a while without feedback")
feat(server): Add native support for PEFT Lora models (#762) - Will detect `peft` model by finding `adapter_config.json`. - This triggers a totally dedicated `download-weights` path - This path, loads the adapter config, finds the base model_id - It loads the base_model - Then peft_model - Then `merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer.merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer. - The chosen location is a **local folder with the name of the user chosen model id** PROs: - Easier than to expect user to merge manually - Barely any change outside of `download-weights` command. - This means everything will work in a single load. - Should enable out of the box SM + HFE CONs: - Creates a local merged model in unusual location, potentially not saved across docker reloads, or ovewriting some files if the PEFT itself was local and containing other files in addition to the lora Alternatives considered: - Add `local_files_only=True` every where (discard because of massive code change for not a good enough reason) - Return something to `launcher` about the new model-id (a cleaner location for this new model), but it would introduce new communication somewhere where we didn't need it before. - Using the HF cache folder and *stopping* the flow after `download-weights` and asking user to restart with the actual local model location Fix #482 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 09:22:45 -06:00
try:
model = AutoPeftModelForCausalLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
low_cpu_mem_usage=True,
)
except Exception:
model = AutoPeftModelForSeq2SeqLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
low_cpu_mem_usage=True,
)
logger.info("Peft model detected.")
logger.info("Merging the lora weights.")
feat(server): Add native support for PEFT Lora models (#762) - Will detect `peft` model by finding `adapter_config.json`. - This triggers a totally dedicated `download-weights` path - This path, loads the adapter config, finds the base model_id - It loads the base_model - Then peft_model - Then `merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer.merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer. - The chosen location is a **local folder with the name of the user chosen model id** PROs: - Easier than to expect user to merge manually - Barely any change outside of `download-weights` command. - This means everything will work in a single load. - Should enable out of the box SM + HFE CONs: - Creates a local merged model in unusual location, potentially not saved across docker reloads, or ovewriting some files if the PEFT itself was local and containing other files in addition to the lora Alternatives considered: - Add `local_files_only=True` every where (discard because of massive code change for not a good enough reason) - Return something to `launcher` about the new model-id (a cleaner location for this new model), but it would introduce new communication somewhere where we didn't need it before. - Using the HF cache folder and *stopping* the flow after `download-weights` and asking user to restart with the actual local model location Fix #482 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 09:22:45 -06:00
base_model_id = model.peft_config["default"].base_model_name_or_path
model = model.merge_and_unload()
2023-09-27 04:22:09 -06:00
feat(server): Add native support for PEFT Lora models (#762) - Will detect `peft` model by finding `adapter_config.json`. - This triggers a totally dedicated `download-weights` path - This path, loads the adapter config, finds the base model_id - It loads the base_model - Then peft_model - Then `merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer.merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer. - The chosen location is a **local folder with the name of the user chosen model id** PROs: - Easier than to expect user to merge manually - Barely any change outside of `download-weights` command. - This means everything will work in a single load. - Should enable out of the box SM + HFE CONs: - Creates a local merged model in unusual location, potentially not saved across docker reloads, or ovewriting some files if the PEFT itself was local and containing other files in addition to the lora Alternatives considered: - Add `local_files_only=True` every where (discard because of massive code change for not a good enough reason) - Return something to `launcher` about the new model-id (a cleaner location for this new model), but it would introduce new communication somewhere where we didn't need it before. - Using the HF cache folder and *stopping* the flow after `download-weights` and asking user to restart with the actual local model location Fix #482 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 09:22:45 -06:00
os.makedirs(model_id, exist_ok=True)
cache_dir = model_id
logger.info(f"Saving the newly created merged model to {cache_dir}")
2023-12-11 06:49:52 -07:00
tokenizer = AutoTokenizer.from_pretrained(
base_model_id, trust_remote_code=trust_remote_code
)
feat(server): Add native support for PEFT Lora models (#762) - Will detect `peft` model by finding `adapter_config.json`. - This triggers a totally dedicated `download-weights` path - This path, loads the adapter config, finds the base model_id - It loads the base_model - Then peft_model - Then `merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer.merge_and_unload()` - Then `save_pretrained(.., safe_serialization=True) - Add back the config + tokenizer. - The chosen location is a **local folder with the name of the user chosen model id** PROs: - Easier than to expect user to merge manually - Barely any change outside of `download-weights` command. - This means everything will work in a single load. - Should enable out of the box SM + HFE CONs: - Creates a local merged model in unusual location, potentially not saved across docker reloads, or ovewriting some files if the PEFT itself was local and containing other files in addition to the lora Alternatives considered: - Add `local_files_only=True` every where (discard because of massive code change for not a good enough reason) - Return something to `launcher` about the new model-id (a cleaner location for this new model), but it would introduce new communication somewhere where we didn't need it before. - Using the HF cache folder and *stopping* the flow after `download-weights` and asking user to restart with the actual local model location Fix #482 # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-08-03 09:22:45 -06:00
model.save_pretrained(cache_dir, safe_serialization=True)
model.config.save_pretrained(cache_dir)
tokenizer.save_pretrained(cache_dir)
Enable multiple LoRa adapters (#2010) * feat: first draft load multiple lora * feat: load weights within layer and refactor lora pass * fix: refactor and reduce lora math * feat: baseline impl single request multi lora support * feat: prefer lorax implementation and port loading logic * fix: prefer adapter_data and refactors * feat: perfer loraxs custom punica kernels and add mlp loras * fix: adjust batch for bgmv * fix: adjust adapter_segments logic when in batch * fix: refactor and move changes to v3 proto * fix: pass model_id for all flash causal lms * fix: pass model_id for all causal and seq2seq lms * fix: add model_id to model test * feat: add lora support to mistral and refactors * feat: prefer model id in request * fix: include rust code for adapter id * feat: bump launcher and add new lora docs * feat: support base model generation and refactors * fix: rename doc to retry ci build * feat: support if vlm models * fix: add adapter_data param and avoid missing layers * fix: add adapter_data param to phi and neox * fix: update all models forwards to include adapter_data * fix: add model_id to IdeficsCausalLM * Update lora.md Fixed a typo * Update lora.md Fixing spam image * fix: add lora kernel to dockerfile, support running without kernels and refactors * fix: avoid dockerfile conflict * fix: refactors and adjust flash llama lora logic * fix: skip llama test due to CI issue (temp) * fix: skip llama test CI (temp) 2 * fix: revert skips and prefer updated ci token for tests * fix: refactors and helpful comments * fix: add noop in TensorParallelAdapterRowLinear too * fix: refactor and move shard_lora_weights logic * fix: exit early if no adapter_data --------- Co-authored-by: Derek <datavistics@gmail.com>
2024-06-25 12:46:27 -06:00
def download_peft(
model_id: Union[str, os.PathLike], revision: str, trust_remote_code: bool
):
torch_dtype = torch.float16
try:
_model = AutoPeftModelForCausalLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
low_cpu_mem_usage=True,
)
except Exception:
_model = AutoPeftModelForSeq2SeqLM.from_pretrained(
model_id,
revision=revision,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
low_cpu_mem_usage=True,
)
logger.info("Peft model downloaded.")