hf_text-generation-inference/server/poetry.lock

1601 lines
138 KiB
TOML
Raw Normal View History

feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand.
2022-10-08 04:30:12 -06:00
[[package]]
name = "accelerate"
version = "0.19.0"
2022-10-08 04:30:12 -06:00
description = "Accelerate"
optional = true
2022-10-08 04:30:12 -06:00
python-versions = ">=3.7.0"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "accelerate-0.19.0-py3-none-any.whl", hash = "sha256:2866b0bf9fff08f51e6384c95fa96725838b70f1988d1cce42e56b820d8a91dd"},
{file = "accelerate-0.19.0.tar.gz", hash = "sha256:84920226b9e642e453ef37593ee55b956b08d8200dea4087c546c34e26157e76"},
]
2022-10-08 04:30:12 -06:00
[package.dependencies]
numpy = ">=1.17"
packaging = ">=20.0"
psutil = "*"
pyyaml = "*"
torch = ">=1.6.0"
2022-10-08 04:30:12 -06:00
[package.extras]
dev = ["black (>=23.1,<24.0)", "datasets", "deepspeed", "evaluate", "hf-doc-builder (>=0.3.0)", "parameterized", "pytest", "pytest-subtests", "pytest-xdist", "rich", "ruff (>=0.0.241)", "scikit-learn", "scipy", "tqdm", "transformers", "urllib3 (<2.0.0)"]
quality = ["black (>=23.1,<24.0)", "hf-doc-builder (>=0.3.0)", "ruff (>=0.0.241)", "urllib3 (<2.0.0)"]
rich = ["rich"]
2022-10-08 04:30:12 -06:00
sagemaker = ["sagemaker"]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
test-dev = ["datasets", "deepspeed", "evaluate", "scikit-learn", "scipy", "tqdm", "transformers"]
test-prod = ["parameterized", "pytest", "pytest-subtests", "pytest-xdist"]
test-trackers = ["comet-ml", "tensorboard", "wandb"]
testing = ["datasets", "deepspeed", "evaluate", "parameterized", "pytest", "pytest-subtests", "pytest-xdist", "scikit-learn", "scipy", "tqdm", "transformers"]
2022-10-08 04:30:12 -06:00
2023-02-13 05:02:45 -07:00
[[package]]
name = "backoff"
version = "2.2.1"
description = "Function decoration for backoff and retry"
optional = false
python-versions = ">=3.7,<4.0"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "backoff-2.2.1-py3-none-any.whl", hash = "sha256:63579f9a0628e06278f7e47b7d7d5b6ce20dc65c5e96a6f3ca99a6adca0396e8"},
{file = "backoff-2.2.1.tar.gz", hash = "sha256:03f829f5bb1923180821643f8753b0502c3b682293992485b0eef2807afa5cba"},
]
2023-02-13 05:02:45 -07:00
2022-10-27 06:25:29 -06:00
[[package]]
name = "bitsandbytes"
version = "0.38.1"
2022-10-27 06:25:29 -06:00
description = "8-bit optimizers and matrix multiplication routines."
optional = true
2022-10-27 06:25:29 -06:00
python-versions = "*"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "bitsandbytes-0.38.1-py3-none-any.whl", hash = "sha256:5f532e7b1353eb7049ae831da2eb62ed8a1e0444116bd51b9e088a6e0bc7a34a"},
{file = "bitsandbytes-0.38.1.tar.gz", hash = "sha256:ba95a806b5065ea3263558e188f07eacb32ad691842932fb0d36a879883167ce"},
]
2022-10-27 06:25:29 -06:00
2023-02-13 05:02:45 -07:00
[[package]]
name = "certifi"
version = "2023.5.7"
2023-02-13 05:02:45 -07:00
description = "Python package for providing Mozilla's CA Bundle."
optional = false
python-versions = ">=3.6"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "certifi-2023.5.7-py3-none-any.whl", hash = "sha256:c6c2e98f5c7869efca1f8916fed228dd91539f9f1b444c314c06eef02980c716"},
{file = "certifi-2023.5.7.tar.gz", hash = "sha256:0f0d56dc5a6ad56fd4ba36484d6cc34451e1c6548c61daad8c320169f91eddc7"},
]
2023-02-13 05:02:45 -07:00
[[package]]
name = "charset-normalizer"
version = "3.1.0"
2023-02-13 05:02:45 -07:00
description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
optional = false
python-versions = ">=3.7.0"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "charset-normalizer-3.1.0.tar.gz", hash = "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5"},
{file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b"},
{file = "charset_normalizer-3.1.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60"},
{file = "charset_normalizer-3.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1"},
{file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0"},
{file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f"},
{file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0"},
{file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795"},
{file = "charset_normalizer-3.1.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c"},
{file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203"},
{file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1"},
{file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137"},
{file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce"},
{file = "charset_normalizer-3.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a"},
{file = "charset_normalizer-3.1.0-cp310-cp310-win32.whl", hash = "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448"},
{file = "charset_normalizer-3.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8"},
{file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19"},
{file = "charset_normalizer-3.1.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017"},
{file = "charset_normalizer-3.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df"},
{file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a"},
{file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41"},
{file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1"},
{file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62"},
{file = "charset_normalizer-3.1.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6"},
{file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5"},
{file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be"},
{file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb"},
{file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac"},
{file = "charset_normalizer-3.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324"},
{file = "charset_normalizer-3.1.0-cp311-cp311-win32.whl", hash = "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909"},
{file = "charset_normalizer-3.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-win32.whl", hash = "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974"},
{file = "charset_normalizer-3.1.0-cp37-cp37m-win_amd64.whl", hash = "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23"},
{file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531"},
{file = "charset_normalizer-3.1.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c"},
{file = "charset_normalizer-3.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14"},
{file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb"},
{file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1"},
{file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b"},
{file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0"},
{file = "charset_normalizer-3.1.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649"},
{file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326"},
{file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11"},
{file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b"},
{file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd"},
{file = "charset_normalizer-3.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8"},
{file = "charset_normalizer-3.1.0-cp38-cp38-win32.whl", hash = "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0"},
{file = "charset_normalizer-3.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59"},
{file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e"},
{file = "charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31"},
{file = "charset_normalizer-3.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f"},
{file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e"},
{file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f"},
{file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854"},
{file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706"},
{file = "charset_normalizer-3.1.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e"},
{file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0"},
{file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230"},
{file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7"},
{file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e"},
{file = "charset_normalizer-3.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f"},
{file = "charset_normalizer-3.1.0-cp39-cp39-win32.whl", hash = "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1"},
{file = "charset_normalizer-3.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b"},
{file = "charset_normalizer-3.1.0-py3-none-any.whl", hash = "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d"},
]
2023-02-13 05:02:45 -07:00
2022-10-08 04:30:12 -06:00
[[package]]
name = "click"
version = "8.1.3"
description = "Composable command line interface toolkit"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"},
{file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"},
]
2022-10-08 04:30:12 -06:00
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[[package]]
name = "colorama"
version = "0.4.6"
2022-10-08 04:30:12 -06:00
description = "Cross-platform colored terminal text."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
2022-10-08 04:30:12 -06:00
2023-02-13 05:02:45 -07:00
[[package]]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
name = "deprecated"
version = "1.2.14"
2023-02-13 05:02:45 -07:00
description = "Python @deprecated decorator to deprecate old python classes, functions or methods."
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "Deprecated-1.2.14-py2.py3-none-any.whl", hash = "sha256:6fac8b097794a90302bdbb17b9b815e732d3c4720583ff1b198499d78470466c"},
{file = "Deprecated-1.2.14.tar.gz", hash = "sha256:e5323eb936458dccc2582dc6f9c322c852a775a27065ff2b0c4970b9d53d01b3"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
wrapt = ">=1.10,<2"
[package.extras]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
dev = ["PyTest", "PyTest-Cov", "bump2version (<1)", "sphinx (<2)", "tox"]
2023-02-13 05:02:45 -07:00
[[package]]
name = "einops"
version = "0.6.1"
description = "A new flavour of deep learning operations"
optional = false
python-versions = ">=3.7"
files = [
{file = "einops-0.6.1-py3-none-any.whl", hash = "sha256:99149e46cc808956b174932fe563d920db4d6e5dadb8c6ecdaa7483b7ef7cfc3"},
{file = "einops-0.6.1.tar.gz", hash = "sha256:f95f8d00f4ded90dbc4b19b6f98b177332614b0357dde66997f3ae5d474dc8c8"},
]
2022-12-08 10:49:33 -07:00
[[package]]
name = "exceptiongroup"
version = "1.1.1"
2022-12-08 10:49:33 -07:00
description = "Backport of PEP 654 (exception groups)"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "exceptiongroup-1.1.1-py3-none-any.whl", hash = "sha256:232c37c63e4f682982c8b6459f33a8981039e5fb8756b2074364e5055c498c9e"},
{file = "exceptiongroup-1.1.1.tar.gz", hash = "sha256:d484c3090ba2889ae2928419117447a14daf3c1231d5e30d0aae34f354f01785"},
]
2022-12-08 10:49:33 -07:00
[package.extras]
test = ["pytest (>=6)"]
[[package]]
name = "filelock"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "3.12.2"
description = "A platform independent file lock."
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "filelock-3.12.2-py3-none-any.whl", hash = "sha256:cbb791cdea2a72f23da6ac5b5269ab0a0d161e9ef0100e653b69049a7706d1ec"},
{file = "filelock-3.12.2.tar.gz", hash = "sha256:002740518d8aa59a26b0c76e10fb8c6e15eae825d34b6fdf670333fd7b938d81"},
]
[package.extras]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
docs = ["furo (>=2023.5.20)", "sphinx (>=7.0.1)", "sphinx-autodoc-typehints (>=1.23,!=1.23.4)"]
testing = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "diff-cover (>=7.5)", "pytest (>=7.3.1)", "pytest-cov (>=4.1)", "pytest-mock (>=3.10)", "pytest-timeout (>=2.1)"]
[[package]]
name = "fsspec"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "2023.6.0"
description = "File-system specification"
optional = false
python-versions = ">=3.8"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "fsspec-2023.6.0-py3-none-any.whl", hash = "sha256:1cbad1faef3e391fba6dc005ae9b5bdcbf43005c9167ce78c915549c352c869a"},
{file = "fsspec-2023.6.0.tar.gz", hash = "sha256:d0b2f935446169753e7a5c5c55681c54ea91996cc67be93c39a154fb3a2742af"},
]
[package.extras]
abfs = ["adlfs"]
adl = ["adlfs"]
arrow = ["pyarrow (>=1)"]
dask = ["dask", "distributed"]
devel = ["pytest", "pytest-cov"]
dropbox = ["dropbox", "dropboxdrivefs", "requests"]
full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"]
fuse = ["fusepy"]
gcs = ["gcsfs"]
git = ["pygit2"]
github = ["requests"]
gs = ["gcsfs"]
gui = ["panel"]
hdfs = ["pyarrow (>=1)"]
http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)", "requests"]
libarchive = ["libarchive-c"]
oci = ["ocifs"]
s3 = ["s3fs"]
sftp = ["paramiko"]
smb = ["smbprotocol"]
ssh = ["paramiko"]
tqdm = ["tqdm"]
2022-10-08 04:30:12 -06:00
[[package]]
name = "googleapis-common-protos"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "1.59.1"
description = "Common protobufs used in Google APIs"
2022-10-08 04:30:12 -06:00
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "googleapis-common-protos-1.59.1.tar.gz", hash = "sha256:b35d530fe825fb4227857bc47ad84c33c809ac96f312e13182bdeaa2abe1178a"},
{file = "googleapis_common_protos-1.59.1-py2.py3-none-any.whl", hash = "sha256:0cbedb6fb68f1c07e18eb4c48256320777707e7d0c55063ae56c15db3224a61e"},
]
2022-10-08 04:30:12 -06:00
[package.dependencies]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
protobuf = ">=3.19.5,<3.20.0 || >3.20.0,<3.20.1 || >3.20.1,<4.21.1 || >4.21.1,<4.21.2 || >4.21.2,<4.21.3 || >4.21.3,<4.21.4 || >4.21.4,<4.21.5 || >4.21.5,<5.0.0.dev0"
[package.extras]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
grpc = ["grpcio (>=1.44.0,<2.0.0.dev0)"]
[[package]]
name = "grpc-interceptor"
version = "0.15.2"
description = "Simplifies gRPC interceptors"
optional = false
python-versions = ">=3.7,<4.0"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "grpc-interceptor-0.15.2.tar.gz", hash = "sha256:5c984110af4fb77d03472ec0468f9c77ddaf798e190410fb7b7f1e76c60c96a4"},
{file = "grpc_interceptor-0.15.2-py3-none-any.whl", hash = "sha256:596dac3cb709ffb6178a4873f5148e254c871c9069f0b11040189b257969490a"},
]
[package.dependencies]
grpcio = ">=1.49.1,<2.0.0"
[package.extras]
testing = ["protobuf (>=4.21.9)"]
[[package]]
name = "grpcio"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "1.54.2"
description = "HTTP/2-based RPC framework"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "grpcio-1.54.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:40e1cbf69d6741b40f750f3cccc64326f927ac6145a9914d33879e586002350c"},
{file = "grpcio-1.54.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:2288d76e4d4aa7ef3fe7a73c1c470b66ea68e7969930e746a8cd8eca6ef2a2ea"},
{file = "grpcio-1.54.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:c0e3155fc5335ec7b3b70f15230234e529ca3607b20a562b6c75fb1b1218874c"},
{file = "grpcio-1.54.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9bf88004fe086c786dc56ef8dd6cb49c026833fdd6f42cb853008bce3f907148"},
{file = "grpcio-1.54.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2be88c081e33f20630ac3343d8ad9f1125f32987968e9c8c75c051c9800896e8"},
{file = "grpcio-1.54.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:33d40954199bddbb6a78f8f6f2b2082660f381cd2583ec860a6c2fa7c8400c08"},
{file = "grpcio-1.54.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b52d00d1793d290c81ad6a27058f5224a7d5f527867e5b580742e1bd211afeee"},
{file = "grpcio-1.54.2-cp310-cp310-win32.whl", hash = "sha256:881d058c5ccbea7cc2c92085a11947b572498a27ef37d3eef4887f499054dca8"},
{file = "grpcio-1.54.2-cp310-cp310-win_amd64.whl", hash = "sha256:0212e2f7fdf7592e4b9d365087da30cb4d71e16a6f213120c89b4f8fb35a3ab3"},
{file = "grpcio-1.54.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:1e623e0cf99a0ac114f091b3083a1848dbc64b0b99e181473b5a4a68d4f6f821"},
{file = "grpcio-1.54.2-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:66233ccd2a9371158d96e05d082043d47dadb18cbb294dc5accfdafc2e6b02a7"},
{file = "grpcio-1.54.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:4cb283f630624ebb16c834e5ac3d7880831b07cbe76cb08ab7a271eeaeb8943e"},
{file = "grpcio-1.54.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2a1e601ee31ef30a9e2c601d0867e236ac54c922d32ed9f727b70dd5d82600d5"},
{file = "grpcio-1.54.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8da84bbc61a4e92af54dc96344f328e5822d574f767e9b08e1602bb5ddc254a"},
{file = "grpcio-1.54.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5008964885e8d23313c8e5ea0d44433be9bfd7e24482574e8cc43c02c02fc796"},
{file = "grpcio-1.54.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a2f5a1f1080ccdc7cbaf1171b2cf384d852496fe81ddedeb882d42b85727f610"},
{file = "grpcio-1.54.2-cp311-cp311-win32.whl", hash = "sha256:b74ae837368cfffeb3f6b498688a123e6b960951be4dec0e869de77e7fa0439e"},
{file = "grpcio-1.54.2-cp311-cp311-win_amd64.whl", hash = "sha256:8cdbcbd687e576d48f7886157c95052825ca9948c0ed2afdc0134305067be88b"},
{file = "grpcio-1.54.2-cp37-cp37m-linux_armv7l.whl", hash = "sha256:782f4f8662a2157c4190d0f99eaaebc602899e84fb1e562a944e5025929e351c"},
{file = "grpcio-1.54.2-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:714242ad0afa63a2e6dabd522ae22e1d76e07060b5af2ddda5474ba4f14c2c94"},
{file = "grpcio-1.54.2-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:f900ed4ad7a0f1f05d35f955e0943944d5a75f607a836958c6b8ab2a81730ef2"},
{file = "grpcio-1.54.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:96a41817d2c763b1d0b32675abeb9179aa2371c72aefdf74b2d2b99a1b92417b"},
{file = "grpcio-1.54.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70fcac7b94f4c904152809a050164650ac81c08e62c27aa9f156ac518029ebbe"},
{file = "grpcio-1.54.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:fd6c6c29717724acf9fc1847c4515d57e4dc12762452457b9cb37461f30a81bb"},
{file = "grpcio-1.54.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:c2392f5b5d84b71d853918687d806c1aa4308109e5ca158a16e16a6be71041eb"},
{file = "grpcio-1.54.2-cp37-cp37m-win_amd64.whl", hash = "sha256:51630c92591d6d3fe488a7c706bd30a61594d144bac7dee20c8e1ce78294f474"},
{file = "grpcio-1.54.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:b04202453941a63b36876a7172b45366dc0cde10d5fd7855c0f4a4e673c0357a"},
{file = "grpcio-1.54.2-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:89dde0ac72a858a44a2feb8e43dc68c0c66f7857a23f806e81e1b7cc7044c9cf"},
{file = "grpcio-1.54.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:09d4bfd84686cd36fd11fd45a0732c7628308d094b14d28ea74a81db0bce2ed3"},
{file = "grpcio-1.54.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7fc2b4edb938c8faa4b3c3ea90ca0dd89b7565a049e8e4e11b77e60e4ed2cc05"},
{file = "grpcio-1.54.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61f7203e2767800edee7a1e1040aaaf124a35ce0c7fe0883965c6b762defe598"},
{file = "grpcio-1.54.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:e416c8baf925b5a1aff31f7f5aecc0060b25d50cce3a5a7255dc5cf2f1d4e5eb"},
{file = "grpcio-1.54.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:dc80c9c6b608bf98066a038e0172013a49cfa9a08d53335aefefda2c64fc68f4"},
{file = "grpcio-1.54.2-cp38-cp38-win32.whl", hash = "sha256:8d6192c37a30a115f4663592861f50e130caed33efc4eec24d92ec881c92d771"},
{file = "grpcio-1.54.2-cp38-cp38-win_amd64.whl", hash = "sha256:46a057329938b08e5f0e12ea3d7aed3ecb20a0c34c4a324ef34e00cecdb88a12"},
{file = "grpcio-1.54.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:2296356b5c9605b73ed6a52660b538787094dae13786ba53080595d52df13a98"},
{file = "grpcio-1.54.2-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:c72956972e4b508dd39fdc7646637a791a9665b478e768ffa5f4fe42123d5de1"},
{file = "grpcio-1.54.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:9bdbb7624d65dc0ed2ed8e954e79ab1724526f09b1efa88dcd9a1815bf28be5f"},
{file = "grpcio-1.54.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c44e1a765b31e175c391f22e8fc73b2a2ece0e5e6ff042743d8109b5d2eff9f"},
{file = "grpcio-1.54.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5cc928cfe6c360c1df636cf7991ab96f059666ac7b40b75a769410cc6217df9c"},
{file = "grpcio-1.54.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a08920fa1a97d4b8ee5db2f31195de4a9def1a91bc003544eb3c9e6b8977960a"},
{file = "grpcio-1.54.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:4864f99aac207e3e45c5e26c6cbb0ad82917869abc2f156283be86c05286485c"},
{file = "grpcio-1.54.2-cp39-cp39-win32.whl", hash = "sha256:b38b3de8cff5bc70f8f9c615f51b48eff7313fc9aca354f09f81b73036e7ddfa"},
{file = "grpcio-1.54.2-cp39-cp39-win_amd64.whl", hash = "sha256:be48496b0e00460717225e7680de57c38be1d8629dc09dadcd1b3389d70d942b"},
{file = "grpcio-1.54.2.tar.gz", hash = "sha256:50a9f075eeda5097aa9a182bb3877fe1272875e45370368ac0ee16ab9e22d019"},
]
2022-10-08 04:30:12 -06:00
[package.extras]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
protobuf = ["grpcio-tools (>=1.54.2)"]
2022-10-08 04:30:12 -06:00
[[package]]
name = "grpcio-reflection"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "1.54.2"
2022-10-08 04:30:12 -06:00
description = "Standard Protobuf Reflection Service for gRPC"
optional = false
python-versions = ">=3.6"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "grpcio-reflection-1.54.2.tar.gz", hash = "sha256:b2e021e1ce4f075615411edfbbd6fdcc485ba474dd6e5a3f559690582959a673"},
{file = "grpcio_reflection-1.54.2-py3-none-any.whl", hash = "sha256:e7759addebbd90768f3a0278320278145758c4687d9e2cd7d76e7cbd0e329274"},
]
2022-10-08 04:30:12 -06:00
[package.dependencies]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
grpcio = ">=1.54.2"
protobuf = ">=4.21.6"
[[package]]
name = "grpcio-status"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "1.54.2"
description = "Status proto mapping for gRPC"
optional = false
python-versions = ">=3.6"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "grpcio-status-1.54.2.tar.gz", hash = "sha256:3255cbec5b7c706caa3d4dd584606c080e6415e15631bb2f6215e2b70055836d"},
{file = "grpcio_status-1.54.2-py3-none-any.whl", hash = "sha256:2a7cb4838225f1b53bd0448a3008c5b5837941e1f3a0b13fa38768f08a7b68c2"},
]
[package.dependencies]
googleapis-common-protos = ">=1.5.5"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
grpcio = ">=1.54.2"
protobuf = ">=4.21.6"
2022-10-08 04:30:12 -06:00
[[package]]
name = "grpcio-tools"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "1.54.2"
2022-10-08 04:30:12 -06:00
description = "Protobuf code generator for gRPC"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "grpcio-tools-1.54.2.tar.gz", hash = "sha256:e11c2c2aee53f340992e8e4d6a59172cbbbd0193f1351de98c4f810a5041d5ca"},
{file = "grpcio_tools-1.54.2-cp310-cp310-linux_armv7l.whl", hash = "sha256:2b96f5f17d3156058be247fd25b062b4768138665694c00b056659618b8fb418"},
{file = "grpcio_tools-1.54.2-cp310-cp310-macosx_12_0_universal2.whl", hash = "sha256:11939c9a8a39bd4815c7e88cb2fee48e1948775b59dbb06de8fcae5991e84f9e"},
{file = "grpcio_tools-1.54.2-cp310-cp310-manylinux_2_17_aarch64.whl", hash = "sha256:129de5579f95d6a55dde185f188b4cbe19d1e2f1471425431d9930c31d300d70"},
{file = "grpcio_tools-1.54.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c4128c01cd6f5ea8f7c2db405dbfd8582cd967d36e6fa0952565436633b0e591"},
{file = "grpcio_tools-1.54.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e5c7292dd899ad8fa09a2be96719648cee37b17909fe8c12007e3bff58ebee61"},
{file = "grpcio_tools-1.54.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:5ef30c2dbc63c1e0a462423ca4f95001814d26ef4fe66208e53fcf220ea3b717"},
{file = "grpcio_tools-1.54.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4abfc1892380abe6cef381eab86f9350cbd703bfe5d834095aa66fd91c886b6d"},
{file = "grpcio_tools-1.54.2-cp310-cp310-win32.whl", hash = "sha256:9acf443dcf6f68fbea3b7fb519e1716e014db1a561939f5aecc4abda74e4015d"},
{file = "grpcio_tools-1.54.2-cp310-cp310-win_amd64.whl", hash = "sha256:21b9d2dee80f3f77e4097252e7f0db89772335a7300b72ab3d2e5c280872b1db"},
{file = "grpcio_tools-1.54.2-cp311-cp311-linux_armv7l.whl", hash = "sha256:7b24fbab9e7598518ce4549e066df00aab79c2bf9bedcdde23fb5ef6a3cf532f"},
{file = "grpcio_tools-1.54.2-cp311-cp311-macosx_10_10_universal2.whl", hash = "sha256:7baa210c20f71a242d9ae0e02734628f6948e8bee3bf538647894af427d28800"},
{file = "grpcio_tools-1.54.2-cp311-cp311-manylinux_2_17_aarch64.whl", hash = "sha256:e3d0e5188ff8dbaddac2ee44731d36f09c4eccd3eac7328e547862c44f75cacd"},
{file = "grpcio_tools-1.54.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:27671c68c7e0e3c5ff9967f5500799f65a04e7b153b8ce10243c87c43199039d"},
{file = "grpcio_tools-1.54.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f39d8e8806b8857fb473ca6a9c7bd800b0673dfdb7283ff569af0345a222f32c"},
{file = "grpcio_tools-1.54.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:8e4c5a48f7b2e8798ce381498ee7b9a83c65b87ae66ee5022387394e5eb51771"},
{file = "grpcio_tools-1.54.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4f285f8ef3de422717a36bd372239ae778b8cc112ce780ca3c7fe266dadc49fb"},
{file = "grpcio_tools-1.54.2-cp311-cp311-win32.whl", hash = "sha256:0f952c8a5c47e9204fe8959f7e9add149e660f6579d67cf65024c32736d34caf"},
{file = "grpcio_tools-1.54.2-cp311-cp311-win_amd64.whl", hash = "sha256:3237149beec39e897fd62cef4aa1e1cd9422d7a95661d24bd0a79200b167e730"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-linux_armv7l.whl", hash = "sha256:0ab1b323905d449298523db5d34fa5bf5fffd645bd872b25598e2f8a01f0ea39"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-macosx_10_10_universal2.whl", hash = "sha256:7d7e6e8d62967b3f037f952620cb7381cc39a4bd31790c75fcfba56cc975d70b"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-manylinux_2_17_aarch64.whl", hash = "sha256:7f4624ef2e76a3a5313c4e61a81be38bcc16b59a68a85d30758b84cd2102b161"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e543f457935ba7b763b121f1bf893974393b4d30065042f947f85a8d81081b80"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0239b929eb8b3b30b2397eef3b9abb245087754d77c3721e3be43c44796de87d"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:0de05c7698c655e9a240dc34ae91d6017b93143ac89e5b20046d7ca3bd09c27c"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a3ce0b98fb581c471424d2cda45120f57658ed97677c6fec4d6decf5d7c1b976"},
{file = "grpcio_tools-1.54.2-cp37-cp37m-win_amd64.whl", hash = "sha256:37393ef90674964175923afe3859fc5a208e1ece565f642b4f76a8c0224a0993"},
{file = "grpcio_tools-1.54.2-cp38-cp38-linux_armv7l.whl", hash = "sha256:8e4531267736d88fde1022b36dd42ed8163e3575bcbd12bfed96662872aa93fe"},
{file = "grpcio_tools-1.54.2-cp38-cp38-macosx_10_10_universal2.whl", hash = "sha256:a0b7049814442f918b522d66b1d015286afbeb9e6d141af54bbfafe31710a3c8"},
{file = "grpcio_tools-1.54.2-cp38-cp38-manylinux_2_17_aarch64.whl", hash = "sha256:b80585e06c4f0082327eb5c9ad96fbdb2b0e7c14971ea5099fe78c22f4608451"},
{file = "grpcio_tools-1.54.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39fd530cfdf58dc05125775cc233b05554d553d27478f14ae5fd8a6306f0cb28"},
{file = "grpcio_tools-1.54.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3bb9ec4aea0f2b3006fb002fa59e5c10f92b48fc374619fbffd14d2b0e388c3e"},
{file = "grpcio_tools-1.54.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d512de051342a576bb89777476d13c5266d9334cf4badb6468aed9dc8f5bdec1"},
{file = "grpcio_tools-1.54.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:1b8ee3099c51ce987fa8a08e6b93fc342b10228415dd96b5c0caa0387f636a6f"},
{file = "grpcio_tools-1.54.2-cp38-cp38-win32.whl", hash = "sha256:6037f123905dc0141f7c8383ca616ef0195e79cd3b4d82faaee789d4045e891b"},
{file = "grpcio_tools-1.54.2-cp38-cp38-win_amd64.whl", hash = "sha256:10dd41862f579d185c60f629b5ee89103e216f63b576079d258d974d980bad87"},
{file = "grpcio_tools-1.54.2-cp39-cp39-linux_armv7l.whl", hash = "sha256:f6787d07fdab31a32c433c1ba34883dea6559d8a3fbe08fb93d834ca34136b71"},
{file = "grpcio_tools-1.54.2-cp39-cp39-macosx_10_10_universal2.whl", hash = "sha256:21b1467e31e44429d2a78b50135c9cdbd4b8f6d3b5cd548bc98985d3bdc352d0"},
{file = "grpcio_tools-1.54.2-cp39-cp39-manylinux_2_17_aarch64.whl", hash = "sha256:30a49b8b168aced2a4ff40959e6c4383ad6cfd7a20839a47a215e9837eb722dc"},
{file = "grpcio_tools-1.54.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8742122782953d2fd038f0a199f047a24e941cc9718b1aac90876dbdb7167739"},
{file = "grpcio_tools-1.54.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:503ef1351c62fb1d6747eaf74932b609d8fdd4345b3591ef910adef8fa9969d0"},
{file = "grpcio_tools-1.54.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:72d15de4c4b6a764a76c4ae69d99c35f7a0751223688c3f7e62dfa95eb4f61be"},
{file = "grpcio_tools-1.54.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:df079479fb1b9e488334312e35ebbf30cbf5ecad6c56599f1a961800b33ab7c1"},
{file = "grpcio_tools-1.54.2-cp39-cp39-win32.whl", hash = "sha256:49c2846dcc4803476e839d8bd4db8845e928f19130e0ea86121f2d1f43d2b452"},
{file = "grpcio_tools-1.54.2-cp39-cp39-win_amd64.whl", hash = "sha256:b82ca472db9c914c44e39a41e9e8bd3ed724523dd7aff5ce37592b8d16920ed9"},
]
2022-10-08 04:30:12 -06:00
[package.dependencies]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
grpcio = ">=1.54.2"
protobuf = ">=4.21.6,<5.0dev"
2022-10-08 04:30:12 -06:00
setuptools = "*"
2023-02-18 06:04:11 -07:00
[[package]]
name = "hf-transfer"
version = "0.1.3"
2023-02-18 06:04:11 -07:00
description = ""
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "hf_transfer-0.1.3-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:862b6ddba8e236bdc73408c20d020cfe5069cac3fd0b6de901c46f031df2b7d9"},
{file = "hf_transfer-0.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:569ef1ec6fec182e706ade4ea0c63f8510fd618ed7ced7c772efaafac7245b07"},
{file = "hf_transfer-0.1.3-cp310-none-win_amd64.whl", hash = "sha256:c9faa88b3491c50d4aa75faf18ae24040cd91aa0565c7f7ba2357dbcbf8372f6"},
{file = "hf_transfer-0.1.3-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:d53954ecfaadc84c15481bf5d4c7282323196b4b6df1d1be54208d4fdedfb407"},
{file = "hf_transfer-0.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:334862f4a82f8a09d6d3f550e67d7e498bb8882e678b7725638254fed3276801"},
{file = "hf_transfer-0.1.3-cp311-none-win_amd64.whl", hash = "sha256:da92a1483a66cf2baa96de133c75e7d5d9a60e4a0e60d228f26c573c73a1feb6"},
{file = "hf_transfer-0.1.3-cp37-cp37m-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:617692a70cf299576d82cfc860923f29ec5c834a3f5242bc0853d4f106670398"},
{file = "hf_transfer-0.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca218fb6efc5c22379d9e64989e84bff426fcf5664fdbbf7cd70aa8b79497652"},
{file = "hf_transfer-0.1.3-cp37-none-win_amd64.whl", hash = "sha256:6e5201b648df6106c232fcdb507db734081fd6220dfb1c432bd27c6fa9453331"},
{file = "hf_transfer-0.1.3-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:445edfcd9d59c9d2541957177a9c9225b1f0e8855f6311fb16e20f67c3426421"},
{file = "hf_transfer-0.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c1bdfa554f0b0936c1623b99058c6998a00fdcd86f75d9203f3f66572d2e30c"},
{file = "hf_transfer-0.1.3-cp38-none-win_amd64.whl", hash = "sha256:606f2fe436e5be73f07987a56cd97c695805413d29203ae39ebd9fc596405435"},
{file = "hf_transfer-0.1.3-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:9913f5ad2644a1f57c1b7755a7d959ca5e0189863bb0473817d0707af230bf6a"},
{file = "hf_transfer-0.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d935946791e338f748e05a23df877d74fbcd39dc7b537f0aa2e5a5841cf7dde8"},
{file = "hf_transfer-0.1.3-cp39-none-win_amd64.whl", hash = "sha256:79099ac043423b263a2843a24213418f309d5c8bc458776622bffe012ebced73"},
{file = "hf_transfer-0.1.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3ce6c5965a57d94db5e043aa488a4df929a32000db125d9c9a1d325e8c7006dc"},
{file = "hf_transfer-0.1.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8a7934c8e491bb395731f677f66dd5f6641432f338a3a9efc9f0b6c186d37cf8"},
{file = "hf_transfer-0.1.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:efb8b41360c7e3d7700c147b70688aed0a03e86fbe5bcfdee079b0e634f026f9"},
{file = "hf_transfer-0.1.3.tar.gz", hash = "sha256:7afd7eb03efad7812a48591b639b2e3f3d1f93c1e9060c18cc63ebf08d7e193c"},
]
2023-02-18 06:04:11 -07:00
[[package]]
name = "huggingface-hub"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "0.14.1"
description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub"
optional = false
python-versions = ">=3.7.0"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "huggingface_hub-0.14.1-py3-none-any.whl", hash = "sha256:9fc619170d800ff3793ad37c9757c255c8783051e1b5b00501205eb43ccc4f27"},
{file = "huggingface_hub-0.14.1.tar.gz", hash = "sha256:9ab899af8e10922eac65e290d60ab956882ab0bf643e3d990b1394b6b47b7fbc"},
]
[package.dependencies]
filelock = "*"
fsspec = "*"
packaging = ">=20.9"
pyyaml = ">=5.1"
requests = "*"
tqdm = ">=4.42.1"
typing-extensions = ">=3.7.4.3"
[package.extras]
all = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"]
cli = ["InquirerPy (==0.3.4)"]
dev = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "black (>=23.1,<24.0)", "gradio", "jedi", "mypy (==0.982)", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "ruff (>=0.0.241)", "soundfile", "types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"]
fastai = ["fastai (>=2.4)", "fastcore (>=1.3.27)", "toml"]
quality = ["black (>=23.1,<24.0)", "mypy (==0.982)", "ruff (>=0.0.241)"]
tensorflow = ["graphviz", "pydot", "tensorflow"]
testing = ["InquirerPy (==0.3.4)", "Jinja2", "Pillow", "gradio", "jedi", "pytest", "pytest-cov", "pytest-env", "pytest-xdist", "soundfile"]
torch = ["torch"]
typing = ["types-PyYAML", "types-requests", "types-simplejson", "types-toml", "types-tqdm", "types-urllib3"]
2023-02-13 05:02:45 -07:00
[[package]]
name = "idna"
version = "3.4"
description = "Internationalized Domain Names in Applications (IDNA)"
optional = false
python-versions = ">=3.5"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"},
{file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"},
]
2023-02-13 05:02:45 -07:00
2022-12-08 10:49:33 -07:00
[[package]]
name = "iniconfig"
version = "2.0.0"
description = "brain-dead simple config-ini parsing"
2022-12-08 10:49:33 -07:00
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"},
{file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"},
]
2022-12-08 10:49:33 -07:00
[[package]]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
name = "jinja2"
version = "3.1.2"
description = "A very fast and expressive template engine."
optional = true
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"},
{file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"},
]
[package.dependencies]
MarkupSafe = ">=2.0"
[package.extras]
i18n = ["Babel (>=2.7)"]
[[package]]
name = "loguru"
version = "0.6.0"
description = "Python logging made (stupidly) simple"
optional = false
python-versions = ">=3.5"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "loguru-0.6.0-py3-none-any.whl", hash = "sha256:4e2414d534a2ab57573365b3e6d0234dfb1d84b68b7f3b948e6fb743860a77c3"},
{file = "loguru-0.6.0.tar.gz", hash = "sha256:066bd06758d0a513e9836fd9c6b5a75bfb3fd36841f4b996bc60b547a309d41c"},
]
[package.dependencies]
colorama = {version = ">=0.3.4", markers = "sys_platform == \"win32\""}
win32-setctime = {version = ">=1.0.0", markers = "sys_platform == \"win32\""}
[package.extras]
dev = ["Sphinx (>=4.1.1)", "black (>=19.10b0)", "colorama (>=0.3.4)", "docutils (==0.16)", "flake8 (>=3.7.7)", "isort (>=5.1.1)", "pytest (>=4.6.2)", "pytest-cov (>=2.7.1)", "sphinx-autobuild (>=0.7.1)", "sphinx-rtd-theme (>=0.4.3)", "tox (>=3.9.0)"]
[[package]]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
name = "markupsafe"
version = "2.1.3"
description = "Safely add untrusted strings to HTML/XML markup."
optional = true
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:cd0f502fe016460680cd20aaa5a76d241d6f35a1c3350c474bac1273803893fa"},
{file = "MarkupSafe-2.1.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e09031c87a1e51556fdcb46e5bd4f59dfb743061cf93c4d6831bf894f125eb57"},
{file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68e78619a61ecf91e76aa3e6e8e33fc4894a2bebe93410754bd28fce0a8a4f9f"},
{file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:65c1a9bcdadc6c28eecee2c119465aebff8f7a584dd719facdd9e825ec61ab52"},
{file = "MarkupSafe-2.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:525808b8019e36eb524b8c68acdd63a37e75714eac50e988180b169d64480a00"},
{file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:962f82a3086483f5e5f64dbad880d31038b698494799b097bc59c2edf392fce6"},
{file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:aa7bd130efab1c280bed0f45501b7c8795f9fdbeb02e965371bbef3523627779"},
{file = "MarkupSafe-2.1.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:c9c804664ebe8f83a211cace637506669e7890fec1b4195b505c214e50dd4eb7"},
{file = "MarkupSafe-2.1.3-cp310-cp310-win32.whl", hash = "sha256:10bbfe99883db80bdbaff2dcf681dfc6533a614f700da1287707e8a5d78a8431"},
{file = "MarkupSafe-2.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:1577735524cdad32f9f694208aa75e422adba74f1baee7551620e43a3141f559"},
{file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad9e82fb8f09ade1c3e1b996a6337afac2b8b9e365f926f5a61aacc71adc5b3c"},
{file = "MarkupSafe-2.1.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3c0fae6c3be832a0a0473ac912810b2877c8cb9d76ca48de1ed31e1c68386575"},
{file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b076b6226fb84157e3f7c971a47ff3a679d837cf338547532ab866c57930dbee"},
{file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bfce63a9e7834b12b87c64d6b155fdd9b3b96191b6bd334bf37db7ff1fe457f2"},
{file = "MarkupSafe-2.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:338ae27d6b8745585f87218a3f23f1512dbf52c26c28e322dbe54bcede54ccb9"},
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e4dd52d80b8c83fdce44e12478ad2e85c64ea965e75d66dbeafb0a3e77308fcc"},
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:df0be2b576a7abbf737b1575f048c23fb1d769f267ec4358296f31c2479db8f9"},
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ca379055a47383d02a5400cb0d110cef0a776fc644cda797db0c5696cfd7e18e"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b7ff0f54cb4ff66dd38bebd335a38e2c22c41a8ee45aa608efc890ac3e3931bc"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:c011a4149cfbcf9f03994ec2edffcb8b1dc2d2aede7ca243746df97a5d41ce48"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:56d9f2ecac662ca1611d183feb03a3fa4406469dafe241673d521dd5ae92a155"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-win32.whl", hash = "sha256:8758846a7e80910096950b67071243da3e5a20ed2546e6392603c096778d48e0"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-win_amd64.whl", hash = "sha256:787003c0ddb00500e49a10f2844fac87aa6ce977b90b0feaaf9de23c22508b24"},
{file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:2ef12179d3a291be237280175b542c07a36e7f60718296278d8593d21ca937d4"},
{file = "MarkupSafe-2.1.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2c1b19b3aaacc6e57b7e25710ff571c24d6c3613a45e905b1fde04d691b98ee0"},
{file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8afafd99945ead6e075b973fefa56379c5b5c53fd8937dad92c662da5d8fd5ee"},
{file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8c41976a29d078bb235fea9b2ecd3da465df42a562910f9022f1a03107bd02be"},
{file = "MarkupSafe-2.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d080e0a5eb2529460b30190fcfcc4199bd7f827663f858a226a81bc27beaa97e"},
{file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:69c0f17e9f5a7afdf2cc9fb2d1ce6aabdb3bafb7f38017c0b77862bcec2bbad8"},
{file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:504b320cd4b7eff6f968eddf81127112db685e81f7e36e75f9f84f0df46041c3"},
{file = "MarkupSafe-2.1.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:42de32b22b6b804f42c5d98be4f7e5e977ecdd9ee9b660fda1a3edf03b11792d"},
{file = "MarkupSafe-2.1.3-cp38-cp38-win32.whl", hash = "sha256:ceb01949af7121f9fc39f7d27f91be8546f3fb112c608bc4029aef0bab86a2a5"},
{file = "MarkupSafe-2.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:1b40069d487e7edb2676d3fbdb2b0829ffa2cd63a2ec26c4938b2d34391b4ecc"},
{file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:8023faf4e01efadfa183e863fefde0046de576c6f14659e8782065bcece22198"},
{file = "MarkupSafe-2.1.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6b2b56950d93e41f33b4223ead100ea0fe11f8e6ee5f641eb753ce4b77a7042b"},
{file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9dcdfd0eaf283af041973bff14a2e143b8bd64e069f4c383416ecd79a81aab58"},
{file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:05fb21170423db021895e1ea1e1f3ab3adb85d1c2333cbc2310f2a26bc77272e"},
{file = "MarkupSafe-2.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:282c2cb35b5b673bbcadb33a585408104df04f14b2d9b01d4c345a3b92861c2c"},
{file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ab4a0df41e7c16a1392727727e7998a467472d0ad65f3ad5e6e765015df08636"},
{file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7ef3cb2ebbf91e330e3bb937efada0edd9003683db6b57bb108c4001f37a02ea"},
{file = "MarkupSafe-2.1.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:0a4e4a1aff6c7ac4cd55792abf96c915634c2b97e3cc1c7129578aa68ebd754e"},
{file = "MarkupSafe-2.1.3-cp39-cp39-win32.whl", hash = "sha256:fec21693218efe39aa7f8599346e90c705afa52c5b31ae019b2e57e8f6542bb2"},
{file = "MarkupSafe-2.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:3fd4abcb888d15a94f32b75d8fd18ee162ca0c064f35b11134be77050296d6ba"},
{file = "MarkupSafe-2.1.3.tar.gz", hash = "sha256:af598ed32d6ae86f1b747b82783958b1a4ab8f617b06fe68795c7f026abbdcad"},
]
[[package]]
name = "mpmath"
version = "1.3.0"
description = "Python library for arbitrary-precision floating-point arithmetic"
optional = true
python-versions = "*"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c"},
{file = "mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f"},
]
[package.extras]
develop = ["codecov", "pycodestyle", "pytest (>=4.6)", "pytest-cov", "wheel"]
docs = ["sphinx"]
gmpy = ["gmpy2 (>=2.1.0a4)"]
tests = ["pytest (>=4.6)"]
[[package]]
name = "networkx"
version = "3.1"
description = "Python package for creating and manipulating graphs and networks"
optional = true
python-versions = ">=3.8"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "networkx-3.1-py3-none-any.whl", hash = "sha256:4f33f68cb2afcf86f28a45f43efc27a9386b535d567d2127f8f61d51dec58d36"},
{file = "networkx-3.1.tar.gz", hash = "sha256:de346335408f84de0eada6ff9fafafff9bcda11f0a0dfaa931133debb146ab61"},
]
[package.extras]
default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"]
developer = ["mypy (>=1.1)", "pre-commit (>=3.2)"]
doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.13)", "sphinx (>=6.1)", "sphinx-gallery (>=0.12)", "texext (>=0.6.7)"]
extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"]
test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"]
2022-10-08 04:30:12 -06:00
[[package]]
name = "numpy"
version = "1.24.3"
description = "Fundamental package for array computing in Python"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
optional = false
2022-10-08 04:30:12 -06:00
python-versions = ">=3.8"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570"},
{file = "numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7"},
{file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463"},
{file = "numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6"},
{file = "numpy-1.24.3-cp310-cp310-win32.whl", hash = "sha256:f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b"},
{file = "numpy-1.24.3-cp310-cp310-win_amd64.whl", hash = "sha256:ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7"},
{file = "numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3"},
{file = "numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf"},
{file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385"},
{file = "numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950"},
{file = "numpy-1.24.3-cp311-cp311-win32.whl", hash = "sha256:c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096"},
{file = "numpy-1.24.3-cp311-cp311-win_amd64.whl", hash = "sha256:5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80"},
{file = "numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7776ea65423ca6a15255ba1872d82d207bd1e09f6d0894ee4a64678dd2204078"},
{file = "numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ae8d0be48d1b6ed82588934aaaa179875e7dc4f3d84da18d7eae6eb3f06c242c"},
{file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ecde0f8adef7dfdec993fd54b0f78183051b6580f606111a6d789cd14c61ea0c"},
{file = "numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4749e053a29364d3452c034827102ee100986903263e89884922ef01a0a6fd2f"},
{file = "numpy-1.24.3-cp38-cp38-win32.whl", hash = "sha256:d933fabd8f6a319e8530d0de4fcc2e6a61917e0b0c271fded460032db42a0fe4"},
{file = "numpy-1.24.3-cp38-cp38-win_amd64.whl", hash = "sha256:56e48aec79ae238f6e4395886b5eaed058abb7231fb3361ddd7bfdf4eed54289"},
{file = "numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4719d5aefb5189f50887773699eaf94e7d1e02bf36c1a9d353d9f46703758ca4"},
{file = "numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0ec87a7084caa559c36e0a2309e4ecb1baa03b687201d0a847c8b0ed476a7187"},
{file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea8282b9bcfe2b5e7d491d0bf7f3e2da29700cec05b49e64d6246923329f2b02"},
{file = "numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210461d87fb02a84ef243cac5e814aad2b7f4be953b32cb53327bb49fd77fbb4"},
{file = "numpy-1.24.3-cp39-cp39-win32.whl", hash = "sha256:784c6da1a07818491b0ffd63c6bbe5a33deaa0e25a20e1b3ea20cf0e43f8046c"},
{file = "numpy-1.24.3-cp39-cp39-win_amd64.whl", hash = "sha256:d5036197ecae68d7f491fcdb4df90082b0d4960ca6599ba2659957aafced7c17"},
{file = "numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:352ee00c7f8387b44d19f4cada524586f07379c0d49270f87233983bc5087ca0"},
{file = "numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a7d6acc2e7524c9955e5c903160aa4ea083736fde7e91276b0e5d98e6332812"},
{file = "numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:35400e6a8d102fd07c71ed7dcadd9eb62ee9a6e84ec159bd48c28235bbb0f8e4"},
{file = "numpy-1.24.3.tar.gz", hash = "sha256:ab344f1bf21f140adab8e47fdbc7c35a477dc01408791f8ba00d018dd0bc5155"},
]
2022-10-08 04:30:12 -06:00
2023-02-13 05:02:45 -07:00
[[package]]
name = "opentelemetry-api"
version = "1.15.0"
description = "OpenTelemetry Python API"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_api-1.15.0-py3-none-any.whl", hash = "sha256:e6c2d2e42140fd396e96edf75a7ceb11073f4efb4db87565a431cc9d0f93f2e0"},
{file = "opentelemetry_api-1.15.0.tar.gz", hash = "sha256:79ab791b4aaad27acc3dc3ba01596db5b5aac2ef75c70622c6038051d6c2cded"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
deprecated = ">=1.2.6"
setuptools = ">=16.0"
[[package]]
name = "opentelemetry-exporter-otlp"
version = "1.15.0"
description = "OpenTelemetry Collector Exporters"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_exporter_otlp-1.15.0-py3-none-any.whl", hash = "sha256:79f22748b6a54808a0448093dfa189c8490e729f67c134d4c992533d9393b33e"},
{file = "opentelemetry_exporter_otlp-1.15.0.tar.gz", hash = "sha256:4f7c49751d9720e2e726e13b0bb958ccade4e29122c305d92c033da432c8d2c5"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
opentelemetry-exporter-otlp-proto-grpc = "1.15.0"
opentelemetry-exporter-otlp-proto-http = "1.15.0"
[[package]]
name = "opentelemetry-exporter-otlp-proto-grpc"
version = "1.15.0"
description = "OpenTelemetry Collector Protobuf over gRPC Exporter"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_exporter_otlp_proto_grpc-1.15.0-py3-none-any.whl", hash = "sha256:c2a5492ba7d140109968135d641d06ce3c5bd73c50665f787526065d57d7fd1d"},
{file = "opentelemetry_exporter_otlp_proto_grpc-1.15.0.tar.gz", hash = "sha256:844f2a4bb9bcda34e4eb6fe36765e5031aacb36dc60ed88c90fc246942ea26e7"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""}
googleapis-common-protos = ">=1.52,<2.0"
grpcio = ">=1.0.0,<2.0.0"
opentelemetry-api = ">=1.12,<2.0"
opentelemetry-proto = "1.15.0"
opentelemetry-sdk = ">=1.12,<2.0"
[package.extras]
test = ["pytest-grpc"]
[[package]]
name = "opentelemetry-exporter-otlp-proto-http"
version = "1.15.0"
description = "OpenTelemetry Collector Protobuf over HTTP Exporter"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_exporter_otlp_proto_http-1.15.0-py3-none-any.whl", hash = "sha256:3ec2a02196c8a54bf5cbf7fe623a5238625638e83b6047a983bdf96e2bbb74c0"},
{file = "opentelemetry_exporter_otlp_proto_http-1.15.0.tar.gz", hash = "sha256:11b2c814249a49b22f6cca7a06b05701f561d577b747f3660dfd67b6eb9daf9c"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
backoff = {version = ">=1.10.0,<3.0.0", markers = "python_version >= \"3.7\""}
googleapis-common-protos = ">=1.52,<2.0"
opentelemetry-api = ">=1.12,<2.0"
opentelemetry-proto = "1.15.0"
opentelemetry-sdk = ">=1.12,<2.0"
requests = ">=2.7,<3.0"
[package.extras]
test = ["responses (==0.22.0)"]
[[package]]
name = "opentelemetry-instrumentation"
version = "0.36b0"
description = "Instrumentation Tools & Auto Instrumentation for OpenTelemetry Python"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_instrumentation-0.36b0-py3-none-any.whl", hash = "sha256:83ba4ae7d5292b5b33e0f851cc5c76d8f91196b9b3527800fc13855c33383ac2"},
{file = "opentelemetry_instrumentation-0.36b0.tar.gz", hash = "sha256:e3ddac9b3b93408ef26c8ecbf38f717042977e16381bb4cd329a5b4cf16998cf"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
opentelemetry-api = ">=1.4,<2.0"
setuptools = ">=16.0"
wrapt = ">=1.0.0,<2.0.0"
[[package]]
name = "opentelemetry-instrumentation-grpc"
version = "0.36b0"
description = "OpenTelemetry gRPC instrumentation"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_instrumentation_grpc-0.36b0-py3-none-any.whl", hash = "sha256:eaa246ed2083c97b13bab2555cb9d170e8433230a31476c4cab8a17fa03380a4"},
{file = "opentelemetry_instrumentation_grpc-0.36b0.tar.gz", hash = "sha256:dc89447c9eb6ea868970f6c13b4ffdac182cdd5a41dd215a0f5393ca6375be55"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
opentelemetry-api = ">=1.12,<2.0"
opentelemetry-instrumentation = "0.36b0"
opentelemetry-sdk = ">=1.12,<2.0"
opentelemetry-semantic-conventions = "0.36b0"
wrapt = ">=1.0.0,<2.0.0"
[package.extras]
instruments = ["grpcio (>=1.27,<2.0)"]
test = ["opentelemetry-instrumentation-grpc[instruments]", "opentelemetry-sdk (>=1.12,<2.0)", "opentelemetry-test-utils (==0.36b0)", "protobuf (>=3.13,<4.0)"]
[[package]]
name = "opentelemetry-proto"
version = "1.15.0"
description = "OpenTelemetry Python Proto"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_proto-1.15.0-py3-none-any.whl", hash = "sha256:044b6d044b4d10530f250856f933442b8753a17f94ae37c207607f733fb9a844"},
{file = "opentelemetry_proto-1.15.0.tar.gz", hash = "sha256:9c4008e40ac8cab359daac283fbe7002c5c29c77ea2674ad5626a249e64e0101"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
protobuf = ">=3.19,<5.0"
[[package]]
name = "opentelemetry-sdk"
version = "1.15.0"
description = "OpenTelemetry Python SDK"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_sdk-1.15.0-py3-none-any.whl", hash = "sha256:555c533e9837766119bbccc7a80458c9971d853a6f1da683a2246cd5e53b4645"},
{file = "opentelemetry_sdk-1.15.0.tar.gz", hash = "sha256:98dbffcfeebcbff12c0c974292d6ea603180a145904cf838b1fe4d5c99078425"},
]
2023-02-13 05:02:45 -07:00
[package.dependencies]
opentelemetry-api = "1.15.0"
opentelemetry-semantic-conventions = "0.36b0"
setuptools = ">=16.0"
typing-extensions = ">=3.7.4"
[[package]]
name = "opentelemetry-semantic-conventions"
version = "0.36b0"
description = "OpenTelemetry Semantic Conventions"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "opentelemetry_semantic_conventions-0.36b0-py3-none-any.whl", hash = "sha256:adc05635e87b9d3e007c9f530eed487fc3ef2177d02f82f674f28ebf9aff8243"},
{file = "opentelemetry_semantic_conventions-0.36b0.tar.gz", hash = "sha256:829dc221795467d98b773c04096e29be038d77526dc8d6ac76f546fb6279bf01"},
]
2023-02-13 05:02:45 -07:00
[[package]]
name = "packaging"
version = "23.1"
description = "Core utilities for Python packages"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "packaging-23.1-py3-none-any.whl", hash = "sha256:994793af429502c4ea2ebf6bf664629d07c1a9fe974af92966e4b8d2df7edc61"},
{file = "packaging-23.1.tar.gz", hash = "sha256:a392980d2b6cffa644431898be54b0045151319d1e7ec34f0cfed48767dd334f"},
]
2022-10-08 04:30:12 -06:00
2022-12-08 10:49:33 -07:00
[[package]]
name = "pluggy"
version = "1.0.0"
description = "plugin and hook calling mechanisms for python"
optional = false
python-versions = ">=3.6"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "pluggy-1.0.0-py2.py3-none-any.whl", hash = "sha256:74134bbf457f031a36d68416e1509f34bd5ccc019f0bcc952c7b909d06b37bd3"},
{file = "pluggy-1.0.0.tar.gz", hash = "sha256:4224373bacce55f955a878bf9cfa763c1e360858e330072059e10bad68531159"},
]
2022-12-08 10:49:33 -07:00
[package.extras]
dev = ["pre-commit", "tox"]
testing = ["pytest", "pytest-benchmark"]
2022-10-08 04:30:12 -06:00
[[package]]
name = "protobuf"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "4.23.2"
2022-10-08 04:30:12 -06:00
description = ""
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "protobuf-4.23.2-cp310-abi3-win32.whl", hash = "sha256:384dd44cb4c43f2ccddd3645389a23ae61aeb8cfa15ca3a0f60e7c3ea09b28b3"},
{file = "protobuf-4.23.2-cp310-abi3-win_amd64.whl", hash = "sha256:09310bce43353b46d73ba7e3bca78273b9bc50349509b9698e64d288c6372c2a"},
{file = "protobuf-4.23.2-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:b2cfab63a230b39ae603834718db74ac11e52bccaaf19bf20f5cce1a84cf76df"},
{file = "protobuf-4.23.2-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:c52cfcbfba8eb791255edd675c1fe6056f723bf832fa67f0442218f8817c076e"},
{file = "protobuf-4.23.2-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:86df87016d290143c7ce3be3ad52d055714ebaebb57cc659c387e76cfacd81aa"},
{file = "protobuf-4.23.2-cp37-cp37m-win32.whl", hash = "sha256:281342ea5eb631c86697e1e048cb7e73b8a4e85f3299a128c116f05f5c668f8f"},
{file = "protobuf-4.23.2-cp37-cp37m-win_amd64.whl", hash = "sha256:ce744938406de1e64b91410f473736e815f28c3b71201302612a68bf01517fea"},
{file = "protobuf-4.23.2-cp38-cp38-win32.whl", hash = "sha256:6c081863c379bb1741be8f8193e893511312b1d7329b4a75445d1ea9955be69e"},
{file = "protobuf-4.23.2-cp38-cp38-win_amd64.whl", hash = "sha256:25e3370eda26469b58b602e29dff069cfaae8eaa0ef4550039cc5ef8dc004511"},
{file = "protobuf-4.23.2-cp39-cp39-win32.whl", hash = "sha256:efabbbbac1ab519a514579ba9ec52f006c28ae19d97915951f69fa70da2c9e91"},
{file = "protobuf-4.23.2-cp39-cp39-win_amd64.whl", hash = "sha256:54a533b971288af3b9926e53850c7eb186886c0c84e61daa8444385a4720297f"},
{file = "protobuf-4.23.2-py3-none-any.whl", hash = "sha256:8da6070310d634c99c0db7df48f10da495cc283fd9e9234877f0cd182d43ab7f"},
{file = "protobuf-4.23.2.tar.gz", hash = "sha256:20874e7ca4436f683b64ebdbee2129a5a2c301579a67d1a7dda2cdf62fb7f5f7"},
]
2022-10-08 04:30:12 -06:00
[[package]]
name = "psutil"
version = "5.9.5"
2022-10-08 04:30:12 -06:00
description = "Cross-platform lib for process and system monitoring in Python."
optional = true
2022-10-08 04:30:12 -06:00
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "psutil-5.9.5-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:be8929ce4313f9f8146caad4272f6abb8bf99fc6cf59344a3167ecd74f4f203f"},
{file = "psutil-5.9.5-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:ab8ed1a1d77c95453db1ae00a3f9c50227ebd955437bcf2a574ba8adbf6a74d5"},
{file = "psutil-5.9.5-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4aef137f3345082a3d3232187aeb4ac4ef959ba3d7c10c33dd73763fbc063da4"},
{file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:ea8518d152174e1249c4f2a1c89e3e6065941df2fa13a1ab45327716a23c2b48"},
{file = "psutil-5.9.5-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:acf2aef9391710afded549ff602b5887d7a2349831ae4c26be7c807c0a39fac4"},
{file = "psutil-5.9.5-cp27-none-win32.whl", hash = "sha256:5b9b8cb93f507e8dbaf22af6a2fd0ccbe8244bf30b1baad6b3954e935157ae3f"},
{file = "psutil-5.9.5-cp27-none-win_amd64.whl", hash = "sha256:8c5f7c5a052d1d567db4ddd231a9d27a74e8e4a9c3f44b1032762bd7b9fdcd42"},
{file = "psutil-5.9.5-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:3c6f686f4225553615612f6d9bc21f1c0e305f75d7d8454f9b46e901778e7217"},
{file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7a7dd9997128a0d928ed4fb2c2d57e5102bb6089027939f3b722f3a210f9a8da"},
{file = "psutil-5.9.5-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89518112647f1276b03ca97b65cc7f64ca587b1eb0278383017c2a0dcc26cbe4"},
{file = "psutil-5.9.5-cp36-abi3-win32.whl", hash = "sha256:104a5cc0e31baa2bcf67900be36acde157756b9c44017b86b2c049f11957887d"},
{file = "psutil-5.9.5-cp36-abi3-win_amd64.whl", hash = "sha256:b258c0c1c9d145a1d5ceffab1134441c4c5113b2417fafff7315a917a026c3c9"},
{file = "psutil-5.9.5-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:c607bb3b57dc779d55e1554846352b4e358c10fff3abf3514a7a6601beebdb30"},
{file = "psutil-5.9.5.tar.gz", hash = "sha256:5410638e4df39c54d957fc51ce03048acd8e6d60abc0f5107af51e5fb566eb3c"},
]
2022-10-08 04:30:12 -06:00
[package.extras]
test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"]
2022-12-08 10:49:33 -07:00
[[package]]
name = "pytest"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
version = "7.3.2"
2022-12-08 10:49:33 -07:00
description = "pytest: simple powerful testing with Python"
optional = false
python-versions = ">=3.7"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
{file = "pytest-7.3.2-py3-none-any.whl", hash = "sha256:cdcbd012c9312258922f8cd3f1b62a6580fdced17db6014896053d47cddf9295"},
{file = "pytest-7.3.2.tar.gz", hash = "sha256:ee990a3cc55ba808b80795a79944756f315c67c12b56abd3ac993a7b8c17030b"},
]
2022-12-08 10:49:33 -07:00
[package.dependencies]
colorama = {version = "*", markers = "sys_platform == \"win32\""}
exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""}
iniconfig = "*"
packaging = "*"
pluggy = ">=0.12,<2.0"
tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""}
[package.extras]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"]
2022-12-08 10:49:33 -07:00
2022-10-08 04:30:12 -06:00
[[package]]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
name = "pyyaml"
2022-10-08 04:30:12 -06:00
version = "6.0"
description = "YAML parser and emitter for Python"
optional = false
python-versions = ">=3.6"
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
files = [
2022-10-08 04:30:12 -06:00
{file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"},
{file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"},
{file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"},
{file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b"},
{file = "PyYAML-6.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"},
{file = "PyYAML-6.0-cp310-cp310-win32.whl", hash = "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513"},
{file = "PyYAML-6.0-cp310-cp310-win_amd64.whl", hash = "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a"},
{file = "PyYAML-6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358"},
{file = "PyYAML-6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1"},
{file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d"},
{file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f"},
{file = "PyYAML-6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782"},
{file = "PyYAML-6.0-cp311-cp311-win32.whl", hash = "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7"},
{file = "PyYAML-6.0-cp311-cp311-win_amd64.whl", hash = "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf"},
{file = "PyYAML-6.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86"},
{file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f"},
{file = "PyYAML-6.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92"},
{file = "PyYAML-6.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4"},
{file = "PyYAML-6.0-cp36-cp36m-win32.whl", hash = "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293"},
{file = "PyYAML-6.0-cp36-cp36m-win_amd64.whl", hash = "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57"},
{file = "PyYAML-6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c"},
{file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0"},
{file = "PyYAML-6.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4"},
{file = "PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9"},
{file = "PyYAML-6.0-cp37-cp37m-win32.whl", hash = "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737"},
{file = "PyYAML-6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d"},
{file = "PyYAML-6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b"},
{file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba"},
{file = "PyYAML-6.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34"},
{file = "PyYAML-6.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287"},
{file = "PyYAML-6.0-cp38-cp38-win32.whl", hash = "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78"},
{file = "PyYAML-6.0-cp38-cp38-win_amd64.whl", hash = "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07"},
{file = "PyYAML-6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b"},
{file = "PyYAML-6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174"},
{file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803"},
{file = "PyYAML-6.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3"},
{file = "PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0"},
{file = "PyYAML-6.0-cp39-cp39-win32.whl", hash = "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb"},
{file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"},
{file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[[package]]
name = "regex"
version = "2023.6.3"
description = "Alternative regular expression module, to replace re."
optional = false
python-versions = ">=3.6"
files = [
{file = "regex-2023.6.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:824bf3ac11001849aec3fa1d69abcb67aac3e150a933963fb12bda5151fe1bfd"},
{file = "regex-2023.6.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:05ed27acdf4465c95826962528f9e8d41dbf9b1aa8531a387dee6ed215a3e9ef"},
{file = "regex-2023.6.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b49c764f88a79160fa64f9a7b425620e87c9f46095ef9c9920542ab2495c8bc"},
{file = "regex-2023.6.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8e3f1316c2293e5469f8f09dc2d76efb6c3982d3da91ba95061a7e69489a14ef"},
{file = "regex-2023.6.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:43e1dd9d12df9004246bacb79a0e5886b3b6071b32e41f83b0acbf293f820ee8"},
{file = "regex-2023.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4959e8bcbfda5146477d21c3a8ad81b185cd252f3d0d6e4724a5ef11c012fb06"},
{file = "regex-2023.6.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:af4dd387354dc83a3bff67127a124c21116feb0d2ef536805c454721c5d7993d"},
{file = "regex-2023.6.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2239d95d8e243658b8dbb36b12bd10c33ad6e6933a54d36ff053713f129aa536"},
{file = "regex-2023.6.3-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:890e5a11c97cf0d0c550eb661b937a1e45431ffa79803b942a057c4fb12a2da2"},
{file = "regex-2023.6.3-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:a8105e9af3b029f243ab11ad47c19b566482c150c754e4c717900a798806b222"},
{file = "regex-2023.6.3-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:25be746a8ec7bc7b082783216de8e9473803706723b3f6bef34b3d0ed03d57e2"},
{file = "regex-2023.6.3-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:3676f1dd082be28b1266c93f618ee07741b704ab7b68501a173ce7d8d0d0ca18"},
{file = "regex-2023.6.3-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:10cb847aeb1728412c666ab2e2000ba6f174f25b2bdc7292e7dd71b16db07568"},
{file = "regex-2023.6.3-cp310-cp310-win32.whl", hash = "sha256:dbbbfce33cd98f97f6bffb17801b0576e653f4fdb1d399b2ea89638bc8d08ae1"},
{file = "regex-2023.6.3-cp310-cp310-win_amd64.whl", hash = "sha256:c5f8037000eb21e4823aa485149f2299eb589f8d1fe4b448036d230c3f4e68e0"},
{file = "regex-2023.6.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c123f662be8ec5ab4ea72ea300359023a5d1df095b7ead76fedcd8babbedf969"},
{file = "regex-2023.6.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9edcbad1f8a407e450fbac88d89e04e0b99a08473f666a3f3de0fd292badb6aa"},
{file = "regex-2023.6.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dcba6dae7de533c876255317c11f3abe4907ba7d9aa15d13e3d9710d4315ec0e"},
{file = "regex-2023.6.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:29cdd471ebf9e0f2fb3cac165efedc3c58db841d83a518b082077e612d3ee5df"},
{file = "regex-2023.6.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:12b74fbbf6cbbf9dbce20eb9b5879469e97aeeaa874145517563cca4029db65c"},
{file = "regex-2023.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c29ca1bd61b16b67be247be87390ef1d1ef702800f91fbd1991f5c4421ebae8"},
{file = "regex-2023.6.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d77f09bc4b55d4bf7cc5eba785d87001d6757b7c9eec237fe2af57aba1a071d9"},
{file = "regex-2023.6.3-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ea353ecb6ab5f7e7d2f4372b1e779796ebd7b37352d290096978fea83c4dba0c"},
{file = "regex-2023.6.3-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:10590510780b7541969287512d1b43f19f965c2ece6c9b1c00fc367b29d8dce7"},
{file = "regex-2023.6.3-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:e2fbd6236aae3b7f9d514312cdb58e6494ee1c76a9948adde6eba33eb1c4264f"},
{file = "regex-2023.6.3-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:6b2675068c8b56f6bfd5a2bda55b8accbb96c02fd563704732fd1c95e2083461"},
{file = "regex-2023.6.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:74419d2b50ecb98360cfaa2974da8689cb3b45b9deff0dcf489c0d333bcc1477"},
{file = "regex-2023.6.3-cp311-cp311-win32.whl", hash = "sha256:fb5ec16523dc573a4b277663a2b5a364e2099902d3944c9419a40ebd56a118f9"},
{file = "regex-2023.6.3-cp311-cp311-win_amd64.whl", hash = "sha256:09e4a1a6acc39294a36b7338819b10baceb227f7f7dbbea0506d419b5a1dd8af"},
{file = "regex-2023.6.3-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:0654bca0cdf28a5956c83839162692725159f4cda8d63e0911a2c0dc76166525"},
{file = "regex-2023.6.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:463b6a3ceb5ca952e66550a4532cef94c9a0c80dc156c4cc343041951aec1697"},
{file = "regex-2023.6.3-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:87b2a5bb5e78ee0ad1de71c664d6eb536dc3947a46a69182a90f4410f5e3f7dd"},
{file = "regex-2023.6.3-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6343c6928282c1f6a9db41f5fd551662310e8774c0e5ebccb767002fcf663ca9"},
{file = "regex-2023.6.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b6192d5af2ccd2a38877bfef086d35e6659566a335b1492786ff254c168b1693"},
{file = "regex-2023.6.3-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:74390d18c75054947e4194019077e243c06fbb62e541d8817a0fa822ea310c14"},
{file = "regex-2023.6.3-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:742e19a90d9bb2f4a6cf2862b8b06dea5e09b96c9f2df1779e53432d7275331f"},
{file = "regex-2023.6.3-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:8abbc5d54ea0ee80e37fef009e3cec5dafd722ed3c829126253d3e22f3846f1e"},
{file = "regex-2023.6.3-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:c2b867c17a7a7ae44c43ebbeb1b5ff406b3e8d5b3e14662683e5e66e6cc868d3"},
{file = "regex-2023.6.3-cp36-cp36m-musllinux_1_1_ppc64le.whl", hash = "sha256:d831c2f8ff278179705ca59f7e8524069c1a989e716a1874d6d1aab6119d91d1"},
{file = "regex-2023.6.3-cp36-cp36m-musllinux_1_1_s390x.whl", hash = "sha256:ee2d1a9a253b1729bb2de27d41f696ae893507c7db224436abe83ee25356f5c1"},
{file = "regex-2023.6.3-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:61474f0b41fe1a80e8dfa70f70ea1e047387b7cd01c85ec88fa44f5d7561d787"},
{file = "regex-2023.6.3-cp36-cp36m-win32.whl", hash = "sha256:0b71e63226e393b534105fcbdd8740410dc6b0854c2bfa39bbda6b0d40e59a54"},
{file = "regex-2023.6.3-cp36-cp36m-win_amd64.whl", hash = "sha256:bbb02fd4462f37060122e5acacec78e49c0fbb303c30dd49c7f493cf21fc5b27"},
{file = "regex-2023.6.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b862c2b9d5ae38a68b92e215b93f98d4c5e9454fa36aae4450f61dd33ff48487"},
{file = "regex-2023.6.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:976d7a304b59ede34ca2921305b57356694f9e6879db323fd90a80f865d355a3"},
{file = "regex-2023.6.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:83320a09188e0e6c39088355d423aa9d056ad57a0b6c6381b300ec1a04ec3d16"},
{file = "regex-2023.6.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9427a399501818a7564f8c90eced1e9e20709ece36be701f394ada99890ea4b3"},
{file = "regex-2023.6.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7178bbc1b2ec40eaca599d13c092079bf529679bf0371c602edaa555e10b41c3"},
{file = "regex-2023.6.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:837328d14cde912af625d5f303ec29f7e28cdab588674897baafaf505341f2fc"},
{file = "regex-2023.6.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:2d44dc13229905ae96dd2ae2dd7cebf824ee92bc52e8cf03dcead37d926da019"},
{file = "regex-2023.6.3-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:d54af539295392611e7efbe94e827311eb8b29668e2b3f4cadcfe6f46df9c777"},
{file = "regex-2023.6.3-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7117d10690c38a622e54c432dfbbd3cbd92f09401d622902c32f6d377e2300ee"},
{file = "regex-2023.6.3-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bb60b503ec8a6e4e3e03a681072fa3a5adcbfa5479fa2d898ae2b4a8e24c4591"},
{file = "regex-2023.6.3-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:65ba8603753cec91c71de423a943ba506363b0e5c3fdb913ef8f9caa14b2c7e0"},
{file = "regex-2023.6.3-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:271f0bdba3c70b58e6f500b205d10a36fb4b58bd06ac61381b68de66442efddb"},
{file = "regex-2023.6.3-cp37-cp37m-win32.whl", hash = "sha256:9beb322958aaca059f34975b0df135181f2e5d7a13b84d3e0e45434749cb20f7"},
{file = "regex-2023.6.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fea75c3710d4f31389eed3c02f62d0b66a9da282521075061ce875eb5300cf23"},
{file = "regex-2023.6.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:8f56fcb7ff7bf7404becdfc60b1e81a6d0561807051fd2f1860b0d0348156a07"},
{file = "regex-2023.6.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d2da3abc88711bce7557412310dfa50327d5769a31d1c894b58eb256459dc289"},
{file = "regex-2023.6.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a99b50300df5add73d307cf66abea093304a07eb017bce94f01e795090dea87c"},
{file = "regex-2023.6.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5708089ed5b40a7b2dc561e0c8baa9535b77771b64a8330b684823cfd5116036"},
{file = "regex-2023.6.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:687ea9d78a4b1cf82f8479cab23678aff723108df3edeac098e5b2498879f4a7"},
{file = "regex-2023.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4d3850beab9f527f06ccc94b446c864059c57651b3f911fddb8d9d3ec1d1b25d"},
{file = "regex-2023.6.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e8915cc96abeb8983cea1df3c939e3c6e1ac778340c17732eb63bb96247b91d2"},
{file = "regex-2023.6.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:841d6e0e5663d4c7b4c8099c9997be748677d46cbf43f9f471150e560791f7ff"},
{file = "regex-2023.6.3-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9edce5281f965cf135e19840f4d93d55b3835122aa76ccacfd389e880ba4cf82"},
{file = "regex-2023.6.3-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b956231ebdc45f5b7a2e1f90f66a12be9610ce775fe1b1d50414aac1e9206c06"},
{file = "regex-2023.6.3-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:36efeba71c6539d23c4643be88295ce8c82c88bbd7c65e8a24081d2ca123da3f"},
{file = "regex-2023.6.3-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:cf67ca618b4fd34aee78740bea954d7c69fdda419eb208c2c0c7060bb822d747"},
{file = "regex-2023.6.3-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b4598b1897837067a57b08147a68ac026c1e73b31ef6e36deeeb1fa60b2933c9"},
{file = "regex-2023.6.3-cp38-cp38-win32.whl", hash = "sha256:f415f802fbcafed5dcc694c13b1292f07fe0befdb94aa8a52905bd115ff41e88"},
{file = "regex-2023.6.3-cp38-cp38-win_amd64.whl", hash = "sha256:d4f03bb71d482f979bda92e1427f3ec9b220e62a7dd337af0aa6b47bf4498f72"},
{file = "regex-2023.6.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ccf91346b7bd20c790310c4147eee6ed495a54ddb6737162a36ce9dbef3e4751"},
{file = "regex-2023.6.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b28f5024a3a041009eb4c333863d7894d191215b39576535c6734cd88b0fcb68"},
{file = "regex-2023.6.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e0bb18053dfcfed432cc3ac632b5e5e5c5b7e55fb3f8090e867bfd9b054dbcbf"},
{file = "regex-2023.6.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9a5bfb3004f2144a084a16ce19ca56b8ac46e6fd0651f54269fc9e230edb5e4a"},
{file = "regex-2023.6.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c6b48d0fa50d8f4df3daf451be7f9689c2bde1a52b1225c5926e3f54b6a9ed1"},
{file = "regex-2023.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:051da80e6eeb6e239e394ae60704d2b566aa6a7aed6f2890a7967307267a5dc6"},
{file = "regex-2023.6.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a4c3b7fa4cdaa69268748665a1a6ff70c014d39bb69c50fda64b396c9116cf77"},
{file = "regex-2023.6.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:457b6cce21bee41ac292d6753d5e94dcbc5c9e3e3a834da285b0bde7aa4a11e9"},
{file = "regex-2023.6.3-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:aad51907d74fc183033ad796dd4c2e080d1adcc4fd3c0fd4fd499f30c03011cd"},
{file = "regex-2023.6.3-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:0385e73da22363778ef2324950e08b689abdf0b108a7d8decb403ad7f5191938"},
{file = "regex-2023.6.3-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:c6a57b742133830eec44d9b2290daf5cbe0a2f1d6acee1b3c7b1c7b2f3606df7"},
{file = "regex-2023.6.3-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:3e5219bf9e75993d73ab3d25985c857c77e614525fac9ae02b1bebd92f7cecac"},
{file = "regex-2023.6.3-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e5087a3c59eef624a4591ef9eaa6e9a8d8a94c779dade95d27c0bc24650261cd"},
{file = "regex-2023.6.3-cp39-cp39-win32.whl", hash = "sha256:20326216cc2afe69b6e98528160b225d72f85ab080cbdf0b11528cbbaba2248f"},
{file = "regex-2023.6.3-cp39-cp39-win_amd64.whl", hash = "sha256:bdff5eab10e59cf26bc479f565e25ed71a7d041d1ded04ccf9aee1d9f208487a"},
{file = "regex-2023.6.3.tar.gz", hash = "sha256:72d1a25bf36d2050ceb35b517afe13864865268dfb45910e2e17a84be6cbfeb0"},
]
[[package]]
name = "requests"
version = "2.31.0"
description = "Python HTTP for Humans."
optional = false
python-versions = ">=3.7"
files = [
{file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"},
{file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"},
2023-02-13 05:02:45 -07:00
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.dependencies]
certifi = ">=2017.4.17"
charset-normalizer = ">=2,<4"
idna = ">=2.5,<4"
urllib3 = ">=1.21.1,<3"
[package.extras]
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "safetensors"
version = "0.3.1"
description = "Fast and Safe Tensor serialization"
optional = false
python-versions = "*"
files = [
{file = "safetensors-0.3.1-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:2ae9b7dd268b4bae6624729dac86deb82104820e9786429b0583e5168db2f770"},
{file = "safetensors-0.3.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:08c85c1934682f1e2cd904d38433b53cd2a98245a7cc31f5689f9322a2320bbf"},
{file = "safetensors-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba625c7af9e1c5d0d91cb83d2fba97d29ea69d4db2015d9714d24c7f6d488e15"},
{file = "safetensors-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b57d5890c619ec10d9f1b6426b8690d0c9c2868a90dc52f13fae6f6407ac141f"},
{file = "safetensors-0.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5c9f562ea696d50b95cadbeb1716dc476714a87792ffe374280c0835312cbfe2"},
{file = "safetensors-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5c115951b3a865ece8d98ee43882f2fd0a999c0200d6e6fec24134715ebe3b57"},
{file = "safetensors-0.3.1-cp310-cp310-win32.whl", hash = "sha256:118f8f7503ea312fc7af27e934088a1b589fb1eff5a7dea2cd1de6c71ee33391"},
{file = "safetensors-0.3.1-cp310-cp310-win_amd64.whl", hash = "sha256:54846eaae25fded28a7bebbb66be563cad221b4c80daee39e2f55df5e5e0266f"},
{file = "safetensors-0.3.1-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:5af82e10946c4822506db0f29269f43147e889054704dde994d4e22f0c37377b"},
{file = "safetensors-0.3.1-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:626c86dd1d930963c8ea7f953a3787ae85322551e3a5203ac731d6e6f3e18f44"},
{file = "safetensors-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:12e30677e6af1f4cc4f2832546e91dbb3b0aa7d575bfa473d2899d524e1ace08"},
{file = "safetensors-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d534b80bc8d39945bb902f34b0454773971fe9e5e1f2142af451759d7e52b356"},
{file = "safetensors-0.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ddd0ddd502cf219666e7d30f23f196cb87e829439b52b39f3e7da7918c3416df"},
{file = "safetensors-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:997a2cc14023713f423e6d16536d55cb16a3d72850f142e05f82f0d4c76d383b"},
{file = "safetensors-0.3.1-cp311-cp311-win32.whl", hash = "sha256:6ae9ca63d9e22f71ec40550207bd284a60a6b4916ae6ca12c85a8d86bf49e0c3"},
{file = "safetensors-0.3.1-cp311-cp311-win_amd64.whl", hash = "sha256:62aa7421ca455418423e35029524489480adda53e3f702453580180ecfebe476"},
{file = "safetensors-0.3.1-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:6d54b3ed367b6898baab75dfd057c24f36ec64d3938ffff2af981d56bfba2f42"},
{file = "safetensors-0.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:262423aeda91117010f8c607889066028f680fbb667f50cfe6eae96f22f9d150"},
{file = "safetensors-0.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:10efe2513a8327fd628cea13167089588acc23093ba132aecfc536eb9a4560fe"},
{file = "safetensors-0.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:689b3d6a7ebce70ee9438267ee55ea89b575c19923876645e927d08757b552fe"},
{file = "safetensors-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:14cd9a87bc73ce06903e9f8ee8b05b056af6f3c9f37a6bd74997a16ed36ff5f4"},
{file = "safetensors-0.3.1-cp37-cp37m-win32.whl", hash = "sha256:a77cb39624480d5f143c1cc272184f65a296f573d61629eff5d495d2e0541d3e"},
{file = "safetensors-0.3.1-cp37-cp37m-win_amd64.whl", hash = "sha256:9eff3190bfbbb52eef729911345c643f875ca4dbb374aa6c559675cfd0ab73db"},
{file = "safetensors-0.3.1-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:05cbfef76e4daa14796db1bbb52072d4b72a44050c368b2b1f6fd3e610669a89"},
{file = "safetensors-0.3.1-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:c49061461f4a81e5ec3415070a3f135530834c89cbd6a7db7cd49e3cb9d9864b"},
{file = "safetensors-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22cf7e73ca42974f098ce0cf4dd8918983700b6b07a4c6827d50c8daefca776e"},
{file = "safetensors-0.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:04f909442d6223ff0016cd2e1b2a95ef8039b92a558014627363a2e267213f62"},
{file = "safetensors-0.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2c573c5a0d5d45791ae8c179e26d74aff86e719056591aa7edb3ca7be55bc961"},
{file = "safetensors-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6994043b12e717cf2a6ba69077ac41f0d3675b2819734f07f61819e854c622c7"},
{file = "safetensors-0.3.1-cp38-cp38-win32.whl", hash = "sha256:158ede81694180a0dbba59422bc304a78c054b305df993c0c6e39c6330fa9348"},
{file = "safetensors-0.3.1-cp38-cp38-win_amd64.whl", hash = "sha256:afdc725beff7121ea8d39a7339f5a6abcb01daa189ea56290b67fe262d56e20f"},
{file = "safetensors-0.3.1-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:cba910fcc9e5e64d32d62b837388721165e9c7e45d23bc3a38ad57694b77f40d"},
{file = "safetensors-0.3.1-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a4f7dbfe7285573cdaddd85ef6fa84ebbed995d3703ab72d71257944e384612f"},
{file = "safetensors-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54aed0802f9eaa83ca7b1cbb986bfb90b8e2c67b6a4bcfe245627e17dad565d4"},
{file = "safetensors-0.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:34b75a766f3cfc99fd4c33e329b76deae63f5f388e455d863a5d6e99472fca8e"},
{file = "safetensors-0.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1a0f31904f35dc14919a145b2d7a2d8842a43a18a629affe678233c4ea90b4af"},
{file = "safetensors-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcf527ecc5f58907fd9031510378105487f318cc91ecdc5aee3c7cc8f46030a8"},
{file = "safetensors-0.3.1-cp39-cp39-win32.whl", hash = "sha256:e2f083112cf97aa9611e2a05cc170a2795eccec5f6ff837f4565f950670a9d83"},
{file = "safetensors-0.3.1-cp39-cp39-win_amd64.whl", hash = "sha256:5f4f614b8e8161cd8a9ca19c765d176a82b122fa3d3387b77862145bfe9b4e93"},
{file = "safetensors-0.3.1.tar.gz", hash = "sha256:571da56ff8d0bec8ae54923b621cda98d36dcef10feb36fd492c4d0c2cd0e869"},
2022-11-07 04:53:56 -07:00
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.extras]
all = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "flax (>=0.6.3)", "h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "isort (>=5.5.4)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)", "tensorflow (>=2.11.0)", "torch (>=1.10)"]
dev = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "flax (>=0.6.3)", "h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "isort (>=5.5.4)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)", "numpy (>=1.21.6)", "paddlepaddle (>=2.4.1)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)", "tensorflow (>=2.11.0)", "torch (>=1.10)"]
jax = ["flax (>=0.6.3)", "jax (>=0.3.25)", "jaxlib (>=0.3.25)"]
numpy = ["numpy (>=1.21.6)"]
paddlepaddle = ["paddlepaddle (>=2.4.1)"]
quality = ["black (==22.3)", "click (==8.0.4)", "flake8 (>=3.8.3)", "isort (>=5.5.4)"]
tensorflow = ["tensorflow (>=2.11.0)"]
testing = ["h5py (>=3.7.0)", "huggingface-hub (>=0.12.1)", "numpy (>=1.21.6)", "pytest (>=7.2.0)", "pytest-benchmark (>=4.0.0)", "setuptools-rust (>=1.5.2)"]
torch = ["torch (>=1.10)"]
[[package]]
name = "sentencepiece"
version = "0.1.99"
description = "SentencePiece python wrapper"
optional = false
python-versions = "*"
files = [
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0eb528e70571b7c02723e5804322469b82fe7ea418c96051d0286c0fa028db73"},
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:77d7fafb2c4e4659cbdf303929503f37a26eabc4ff31d3a79bf1c5a1b338caa7"},
{file = "sentencepiece-0.1.99-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:be9cf5b9e404c245aeb3d3723c737ba7a8f5d4ba262ef233a431fa6c45f732a0"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:baed1a26464998f9710d20e52607c29ffd4293e7c71c6a1f83f51ad0911ec12c"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9832f08bb372d4c8b567612f8eab9e36e268dff645f1c28f9f8e851be705f6d1"},
{file = "sentencepiece-0.1.99-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:019e7535108e309dae2b253a75834fc3128240aa87c00eb80732078cdc182588"},
{file = "sentencepiece-0.1.99-cp310-cp310-win32.whl", hash = "sha256:fa16a830416bb823fa2a52cbdd474d1f7f3bba527fd2304fb4b140dad31bb9bc"},
{file = "sentencepiece-0.1.99-cp310-cp310-win_amd64.whl", hash = "sha256:14b0eccb7b641d4591c3e12ae44cab537d68352e4d3b6424944f0c447d2348d5"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6d3c56f24183a1e8bd61043ff2c58dfecdc68a5dd8955dc13bab83afd5f76b81"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ed6ea1819fd612c989999e44a51bf556d0ef6abfb553080b9be3d347e18bcfb7"},
{file = "sentencepiece-0.1.99-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a2a0260cd1fb7bd8b4d4f39dc2444a8d5fd4e0a0c4d5c899810ef1abf99b2d45"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8a1abff4d1ff81c77cac3cc6fefa34fa4b8b371e5ee51cb7e8d1ebc996d05983"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:004e6a621d4bc88978eecb6ea7959264239a17b70f2cbc348033d8195c9808ec"},
{file = "sentencepiece-0.1.99-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db361e03342c41680afae5807590bc88aa0e17cfd1a42696a160e4005fcda03b"},
{file = "sentencepiece-0.1.99-cp311-cp311-win32.whl", hash = "sha256:2d95e19168875b70df62916eb55428a0cbcb834ac51d5a7e664eda74def9e1e0"},
{file = "sentencepiece-0.1.99-cp311-cp311-win_amd64.whl", hash = "sha256:f90d73a6f81248a909f55d8e6ef56fec32d559e1e9af045f0b0322637cb8e5c7"},
{file = "sentencepiece-0.1.99-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:62e24c81e74bd87a6e0d63c51beb6527e4c0add67e1a17bac18bcd2076afcfeb"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:57efcc2d51caff20d9573567d9fd3f854d9efe613ed58a439c78c9f93101384a"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6a904c46197993bd1e95b93a6e373dca2f170379d64441041e2e628ad4afb16f"},
{file = "sentencepiece-0.1.99-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d89adf59854741c0d465f0e1525b388c0d174f611cc04af54153c5c4f36088c4"},
{file = "sentencepiece-0.1.99-cp36-cp36m-win32.whl", hash = "sha256:47c378146928690d1bc106fdf0da768cebd03b65dd8405aa3dd88f9c81e35dba"},
{file = "sentencepiece-0.1.99-cp36-cp36m-win_amd64.whl", hash = "sha256:9ba142e7a90dd6d823c44f9870abdad45e6c63958eb60fe44cca6828d3b69da2"},
{file = "sentencepiece-0.1.99-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b7b1a9ae4d7c6f1f867e63370cca25cc17b6f4886729595b885ee07a58d3cec3"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d0f644c9d4d35c096a538507b2163e6191512460035bf51358794a78515b74f7"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c8843d23a0f686d85e569bd6dcd0dd0e0cbc03731e63497ca6d5bacd18df8b85"},
{file = "sentencepiece-0.1.99-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:33e6f690a1caebb4867a2e367afa1918ad35be257ecdb3455d2bbd787936f155"},
{file = "sentencepiece-0.1.99-cp37-cp37m-win32.whl", hash = "sha256:8a321866c2f85da7beac74a824b4ad6ddc2a4c9bccd9382529506d48f744a12c"},
{file = "sentencepiece-0.1.99-cp37-cp37m-win_amd64.whl", hash = "sha256:c42f753bcfb7661c122a15b20be7f684b61fc8592c89c870adf52382ea72262d"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:85b476406da69c70586f0bb682fcca4c9b40e5059814f2db92303ea4585c650c"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cfbcfe13c69d3f87b7fcd5da168df7290a6d006329be71f90ba4f56bc77f8561"},
{file = "sentencepiece-0.1.99-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:445b0ec381af1cd4eef95243e7180c63d9c384443c16c4c47a28196bd1cda937"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6890ea0f2b4703f62d0bf27932e35808b1f679bdb05c7eeb3812b935ba02001"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fb71af492b0eefbf9f2501bec97bcd043b6812ab000d119eaf4bd33f9e283d03"},
{file = "sentencepiece-0.1.99-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:27b866b5bd3ddd54166bbcbf5c8d7dd2e0b397fac8537991c7f544220b1f67bc"},
{file = "sentencepiece-0.1.99-cp38-cp38-win32.whl", hash = "sha256:b133e8a499eac49c581c3c76e9bdd08c338cc1939e441fee6f92c0ccb5f1f8be"},
{file = "sentencepiece-0.1.99-cp38-cp38-win_amd64.whl", hash = "sha256:0eaf3591dd0690a87f44f4df129cf8d05d8a4029b5b6709b489b8e27f9a9bcff"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:38efeda9bbfb55052d482a009c6a37e52f42ebffcea9d3a98a61de7aee356a28"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6c030b081dc1e1bcc9fadc314b19b740715d3d566ad73a482da20d7d46fd444c"},
{file = "sentencepiece-0.1.99-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:84dbe53e02e4f8a2e45d2ac3e430d5c83182142658e25edd76539b7648928727"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b0f55d0a0ee1719b4b04221fe0c9f0c3461dc3dabd77a035fa2f4788eb3ef9a"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:18e800f206cd235dc27dc749299e05853a4e4332e8d3dfd81bf13d0e5b9007d9"},
{file = "sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae1c40cda8f9d5b0423cfa98542735c0235e7597d79caf318855cdf971b2280"},
{file = "sentencepiece-0.1.99-cp39-cp39-win32.whl", hash = "sha256:c84ce33af12ca222d14a1cdd37bd76a69401e32bc68fe61c67ef6b59402f4ab8"},
{file = "sentencepiece-0.1.99-cp39-cp39-win_amd64.whl", hash = "sha256:350e5c74d739973f1c9643edb80f7cc904dc948578bcb1d43c6f2b173e5d18dd"},
{file = "sentencepiece-0.1.99.tar.gz", hash = "sha256:189c48f5cb2949288f97ccdb97f0473098d9c3dcf5a3d99d4eabe719ec27297f"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[[package]]
name = "setuptools"
version = "67.8.0"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.7"
files = [
{file = "setuptools-67.8.0-py3-none-any.whl", hash = "sha256:5df61bf30bb10c6f756eb19e7c9f3b473051f48db77fddbe06ff2ca307df9a6f"},
{file = "setuptools-67.8.0.tar.gz", hash = "sha256:62642358adc77ffa87233bc4d2354c4b2682d214048f500964dbe760ccedf102"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.extras]
docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
[[package]]
name = "sympy"
version = "1.12"
description = "Computer algebra system (CAS) in Python"
optional = true
python-versions = ">=3.8"
files = [
{file = "sympy-1.12-py3-none-any.whl", hash = "sha256:c3588cd4295d0c0f603d0f2ae780587e64e2efeedb3521e46b9bb1d08d184fa5"},
{file = "sympy-1.12.tar.gz", hash = "sha256:ebf595c8dac3e0fdc4152c51878b498396ec7f30e7a914d6071e674d49420fb8"},
2022-10-08 04:30:12 -06:00
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.dependencies]
mpmath = ">=0.19"
[[package]]
name = "tokenizers"
version = "0.13.3"
description = "Fast and Customizable Tokenizers"
optional = false
python-versions = "*"
files = [
{file = "tokenizers-0.13.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:f3835c5be51de8c0a092058a4d4380cb9244fb34681fd0a295fbf0a52a5fdf33"},
{file = "tokenizers-0.13.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4ef4c3e821730f2692489e926b184321e887f34fb8a6b80b8096b966ba663d07"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5fd1a6a25353e9aa762e2aae5a1e63883cad9f4e997c447ec39d071020459bc"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee0b1b311d65beab83d7a41c56a1e46ab732a9eed4460648e8eb0bd69fc2d059"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ef4215284df1277dadbcc5e17d4882bda19f770d02348e73523f7e7d8b8d396"},
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4d53976079cff8a033f778fb9adca2d9d69d009c02fa2d71a878b5f3963ed30"},
{file = "tokenizers-0.13.3-cp310-cp310-win32.whl", hash = "sha256:1f0e3b4c2ea2cd13238ce43548959c118069db7579e5d40ec270ad77da5833ce"},
{file = "tokenizers-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:89649c00d0d7211e8186f7a75dfa1db6996f65edce4b84821817eadcc2d3c79e"},
{file = "tokenizers-0.13.3-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:56b726e0d2bbc9243872b0144515ba684af5b8d8cd112fb83ee1365e26ec74c8"},
{file = "tokenizers-0.13.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc5c022ce692e1f499d745af293ab9ee6f5d92538ed2faf73f9708c89ee59ce6"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f55c981ac44ba87c93e847c333e58c12abcbb377a0c2f2ef96e1a266e4184ff2"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f247eae99800ef821a91f47c5280e9e9afaeed9980fc444208d5aa6ba69ff148"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b3e3215d048e94f40f1c95802e45dcc37c5b05eb46280fc2ccc8cd351bff839"},
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ba2b0bf01777c9b9bc94b53764d6684554ce98551fec496f71bc5be3a03e98b"},
{file = "tokenizers-0.13.3-cp311-cp311-win32.whl", hash = "sha256:cc78d77f597d1c458bf0ea7c2a64b6aa06941c7a99cb135b5969b0278824d808"},
{file = "tokenizers-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:ecf182bf59bd541a8876deccf0360f5ae60496fd50b58510048020751cf1724c"},
{file = "tokenizers-0.13.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:0527dc5436a1f6bf2c0327da3145687d3bcfbeab91fed8458920093de3901b44"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cbb2c307627dc99b44b22ef05ff4473aa7c7cc1fec8f0a8b37d8a64b1a16d2"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4560dbdeaae5b7ee0d4e493027e3de6d53c991b5002d7ff95083c99e11dd5ac0"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64064bd0322405c9374305ab9b4c07152a1474370327499911937fd4a76d004b"},
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8c6e2ab0f2e3d939ca66aa1d596602105fe33b505cd2854a4c1717f704c51de"},
{file = "tokenizers-0.13.3-cp37-cp37m-win32.whl", hash = "sha256:6cc29d410768f960db8677221e497226e545eaaea01aa3613fa0fdf2cc96cff4"},
{file = "tokenizers-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fc2a7fdf864554a0dacf09d32e17c0caa9afe72baf9dd7ddedc61973bae352d8"},
{file = "tokenizers-0.13.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8791dedba834c1fc55e5f1521be325ea3dafb381964be20684b92fdac95d79b7"},
{file = "tokenizers-0.13.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:d607a6a13718aeb20507bdf2b96162ead5145bbbfa26788d6b833f98b31b26e1"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3791338f809cd1bf8e4fee6b540b36822434d0c6c6bc47162448deee3f77d425"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2f35f30e39e6aab8716f07790f646bdc6e4a853816cc49a95ef2a9016bf9ce6"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310204dfed5aa797128b65d63538a9837cbdd15da2a29a77d67eefa489edda26"},
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0f9b92ea052305166559f38498b3b0cae159caea712646648aaa272f7160963"},
{file = "tokenizers-0.13.3-cp38-cp38-win32.whl", hash = "sha256:9a3fa134896c3c1f0da6e762d15141fbff30d094067c8f1157b9fdca593b5806"},
{file = "tokenizers-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:8e7b0cdeace87fa9e760e6a605e0ae8fc14b7d72e9fc19c578116f7287bb873d"},
{file = "tokenizers-0.13.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:00cee1e0859d55507e693a48fa4aef07060c4bb6bd93d80120e18fea9371c66d"},
{file = "tokenizers-0.13.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a23ff602d0797cea1d0506ce69b27523b07e70f6dda982ab8cf82402de839088"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70ce07445050b537d2696022dafb115307abdffd2a5c106f029490f84501ef97"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:280ffe95f50eaaf655b3a1dc7ff1d9cf4777029dbbc3e63a74e65a056594abc3"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97acfcec592f7e9de8cadcdcda50a7134423ac8455c0166b28c9ff04d227b371"},
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd7730c98a3010cd4f523465867ff95cd9d6430db46676ce79358f65ae39797b"},
{file = "tokenizers-0.13.3-cp39-cp39-win32.whl", hash = "sha256:48625a108029cb1ddf42e17a81b5a3230ba6888a70c9dc14e81bc319e812652d"},
{file = "tokenizers-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:bc0a6f1ba036e482db6453571c9e3e60ecd5489980ffd95d11dc9f960483d783"},
{file = "tokenizers-0.13.3.tar.gz", hash = "sha256:2e546dbb68b623008a5442353137fbb0123d311a6d7ba52f2667c8862a75af2e"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.extras]
dev = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"]
testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
[[package]]
name = "tomli"
version = "2.0.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.7"
files = [
2022-12-08 10:49:33 -07:00
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[[package]]
name = "torch"
version = "2.0.1"
description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration"
optional = true
python-versions = ">=3.8.0"
files = [
{file = "torch-2.0.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:8ced00b3ba471856b993822508f77c98f48a458623596a4c43136158781e306a"},
{file = "torch-2.0.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:359bfaad94d1cda02ab775dc1cc386d585712329bb47b8741607ef6ef4950747"},
{file = "torch-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:7c84e44d9002182edd859f3400deaa7410f5ec948a519cc7ef512c2f9b34d2c4"},
{file = "torch-2.0.1-cp310-none-macosx_10_9_x86_64.whl", hash = "sha256:567f84d657edc5582d716900543e6e62353dbe275e61cdc36eda4929e46df9e7"},
{file = "torch-2.0.1-cp310-none-macosx_11_0_arm64.whl", hash = "sha256:787b5a78aa7917465e9b96399b883920c88a08f4eb63b5a5d2d1a16e27d2f89b"},
{file = "torch-2.0.1-cp311-cp311-manylinux1_x86_64.whl", hash = "sha256:e617b1d0abaf6ced02dbb9486803abfef0d581609b09641b34fa315c9c40766d"},
{file = "torch-2.0.1-cp311-cp311-manylinux2014_aarch64.whl", hash = "sha256:b6019b1de4978e96daa21d6a3ebb41e88a0b474898fe251fd96189587408873e"},
{file = "torch-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:dbd68cbd1cd9da32fe5d294dd3411509b3d841baecb780b38b3b7b06c7754434"},
{file = "torch-2.0.1-cp311-none-macosx_10_9_x86_64.whl", hash = "sha256:ef654427d91600129864644e35deea761fb1fe131710180b952a6f2e2207075e"},
{file = "torch-2.0.1-cp311-none-macosx_11_0_arm64.whl", hash = "sha256:25aa43ca80dcdf32f13da04c503ec7afdf8e77e3a0183dd85cd3e53b2842e527"},
{file = "torch-2.0.1-cp38-cp38-manylinux1_x86_64.whl", hash = "sha256:5ef3ea3d25441d3957348f7e99c7824d33798258a2bf5f0f0277cbcadad2e20d"},
{file = "torch-2.0.1-cp38-cp38-manylinux2014_aarch64.whl", hash = "sha256:0882243755ff28895e8e6dc6bc26ebcf5aa0911ed81b2a12f241fc4b09075b13"},
{file = "torch-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:f66aa6b9580a22b04d0af54fcd042f52406a8479e2b6a550e3d9f95963e168c8"},
{file = "torch-2.0.1-cp38-none-macosx_10_9_x86_64.whl", hash = "sha256:1adb60d369f2650cac8e9a95b1d5758e25d526a34808f7448d0bd599e4ae9072"},
{file = "torch-2.0.1-cp38-none-macosx_11_0_arm64.whl", hash = "sha256:1bcffc16b89e296826b33b98db5166f990e3b72654a2b90673e817b16c50e32b"},
{file = "torch-2.0.1-cp39-cp39-manylinux1_x86_64.whl", hash = "sha256:e10e1597f2175365285db1b24019eb6f04d53dcd626c735fc502f1e8b6be9875"},
{file = "torch-2.0.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:423e0ae257b756bb45a4b49072046772d1ad0c592265c5080070e0767da4e490"},
{file = "torch-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:8742bdc62946c93f75ff92da00e3803216c6cce9b132fbca69664ca38cfb3e18"},
{file = "torch-2.0.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:c62df99352bd6ee5a5a8d1832452110435d178b5164de450831a3a8cc14dc680"},
{file = "torch-2.0.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:671a2565e3f63b8fe8e42ae3e36ad249fe5e567435ea27b94edaa672a7d0c416"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.dependencies]
filelock = "*"
jinja2 = "*"
networkx = "*"
sympy = "*"
typing-extensions = "*"
[package.extras]
opt-einsum = ["opt-einsum (>=3.3)"]
[[package]]
name = "tqdm"
version = "4.65.0"
description = "Fast, Extensible Progress Meter"
optional = false
python-versions = ">=3.7"
files = [
{file = "tqdm-4.65.0-py3-none-any.whl", hash = "sha256:c4f53a17fe37e132815abceec022631be8ffe1b9381c2e6e30aa70edc99e9671"},
{file = "tqdm-4.65.0.tar.gz", hash = "sha256:1871fb68a86b8fb3b59ca4cdd3dcccbc7e6d613eeed31f4c332531977b89beb5"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[package.extras]
dev = ["py-make (>=0.1.0)", "twine", "wheel"]
notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "transformers"
version = "4.30.2"
description = "State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow"
optional = false
python-versions = ">=3.7.0"
files = [
{file = "transformers-4.30.2-py3-none-any.whl", hash = "sha256:c332e3a3097f9ed89ce556b403251235931c00237b8bc2d7adaa19d226c13f1d"},
{file = "transformers-4.30.2.tar.gz", hash = "sha256:f4a8aac4e1baffab4033f4a345b0d7dc7957d12a4f1ba969afea08205a513045"},
]
[package.dependencies]
filelock = "*"
huggingface-hub = ">=0.14.1,<1.0"
numpy = ">=1.17"
packaging = ">=20.0"
pyyaml = ">=5.1"
regex = "!=2019.12.17"
requests = "*"
safetensors = ">=0.3.1"
tokenizers = ">=0.11.1,<0.11.3 || >0.11.3,<0.14"
tqdm = ">=4.27"
[package.extras]
accelerate = ["accelerate (>=0.20.2)"]
agents = ["Pillow", "accelerate (>=0.20.2)", "datasets (!=2.5.0)", "diffusers", "opencv-python", "sentencepiece (>=0.1.91,!=0.1.92)", "torch (>=1.9,!=1.12.0)"]
all = ["Pillow", "accelerate (>=0.20.2)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.3)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"]
audio = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
codecarbon = ["codecarbon (==1.2.0)"]
deepspeed = ["accelerate (>=0.20.2)", "deepspeed (>=0.8.3)"]
deepspeed-testing = ["GitPython (<3.1.19)", "accelerate (>=0.20.2)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "deepspeed (>=0.8.3)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "optuna", "parameterized", "protobuf (<=3.20.3)", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "sentencepiece (>=0.1.91,!=0.1.92)", "timeout-decorator"]
dev = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.20.2)", "av (==9.2.0)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "decord (==0.6.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "flax (>=0.4.1,<=0.6.9)", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.3)", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
dev-tensorflow = ["GitPython (<3.1.19)", "Pillow", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "nltk", "onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "parameterized", "phonemizer", "protobuf (<=3.20.3)", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timeout-decorator", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "urllib3 (<2.0.0)"]
dev-torch = ["GitPython (<3.1.19)", "Pillow", "accelerate (>=0.20.2)", "beautifulsoup4", "black (>=23.1,<24.0)", "codecarbon (==1.2.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "fugashi (>=1.0)", "hf-doc-builder", "hf-doc-builder (>=0.3.0)", "ipadic (>=1.0.0,<2.0)", "isort (>=5.5.4)", "kenlm", "librosa", "nltk", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "optuna", "parameterized", "phonemizer", "protobuf (<=3.20.3)", "psutil", "pyctcdecode (>=0.4.0)", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "ray[tune]", "rhoknp (>=1.1.0,<1.3.1)", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "ruff (>=0.0.241,<=0.0.259)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "scikit-learn", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "timeout-decorator", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)", "urllib3 (<2.0.0)"]
docs = ["Pillow", "accelerate (>=0.20.2)", "av (==9.2.0)", "codecarbon (==1.2.0)", "decord (==0.6.0)", "flax (>=0.4.1,<=0.6.9)", "hf-doc-builder", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "kenlm", "keras-nlp (>=0.3.1)", "librosa", "onnxconverter-common", "optax (>=0.0.8,<=0.1.4)", "optuna", "phonemizer", "protobuf (<=3.20.3)", "pyctcdecode (>=0.4.0)", "ray[tune]", "sentencepiece (>=0.1.91,!=0.1.92)", "sigopt", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx", "timm", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "torchaudio", "torchvision"]
docs-specific = ["hf-doc-builder"]
fairscale = ["fairscale (>0.3)"]
flax = ["flax (>=0.4.1,<=0.6.9)", "jax (>=0.2.8,!=0.3.2,<=0.3.6)", "jaxlib (>=0.1.65,<=0.3.6)", "optax (>=0.0.8,<=0.1.4)"]
flax-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
ftfy = ["ftfy"]
integrations = ["optuna", "ray[tune]", "sigopt"]
ja = ["fugashi (>=1.0)", "ipadic (>=1.0.0,<2.0)", "rhoknp (>=1.1.0,<1.3.1)", "sudachidict-core (>=20220729)", "sudachipy (>=0.6.6)", "unidic (>=1.0.2)", "unidic-lite (>=1.0.7)"]
modelcreation = ["cookiecutter (==1.7.3)"]
natten = ["natten (>=0.14.6)"]
onnx = ["onnxconverter-common", "onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)", "tf2onnx"]
onnxruntime = ["onnxruntime (>=1.4.0)", "onnxruntime-tools (>=1.4.2)"]
optuna = ["optuna"]
quality = ["GitPython (<3.1.19)", "black (>=23.1,<24.0)", "datasets (!=2.5.0)", "hf-doc-builder (>=0.3.0)", "isort (>=5.5.4)", "ruff (>=0.0.241,<=0.0.259)", "urllib3 (<2.0.0)"]
ray = ["ray[tune]"]
retrieval = ["datasets (!=2.5.0)", "faiss-cpu"]
sagemaker = ["sagemaker (>=2.31.0)"]
sentencepiece = ["protobuf (<=3.20.3)", "sentencepiece (>=0.1.91,!=0.1.92)"]
serving = ["fastapi", "pydantic", "starlette", "uvicorn"]
sigopt = ["sigopt"]
sklearn = ["scikit-learn"]
speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
testing = ["GitPython (<3.1.19)", "beautifulsoup4", "black (>=23.1,<24.0)", "cookiecutter (==1.7.3)", "datasets (!=2.5.0)", "dill (<0.3.5)", "evaluate (>=0.2.0)", "faiss-cpu", "hf-doc-builder (>=0.3.0)", "nltk", "parameterized", "protobuf (<=3.20.3)", "psutil", "pytest (>=7.2.0)", "pytest-timeout", "pytest-xdist", "rjieba", "rouge-score (!=0.0.7,!=0.0.8,!=0.1,!=0.1.1)", "sacrebleu (>=1.4.12,<2.0.0)", "sacremoses", "timeout-decorator"]
tf = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"]
tf-cpu = ["keras-nlp (>=0.3.1)", "onnxconverter-common", "tensorflow-cpu (>=2.4,<2.13)", "tensorflow-text (<2.13)", "tf2onnx"]
tf-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)"]
timm = ["timm"]
tokenizers = ["tokenizers (>=0.11.1,!=0.11.3,<0.14)"]
torch = ["accelerate (>=0.20.2)", "torch (>=1.9,!=1.12.0)"]
torch-speech = ["kenlm", "librosa", "phonemizer", "pyctcdecode (>=0.4.0)", "torchaudio"]
torch-vision = ["Pillow", "torchvision"]
torchhub = ["filelock", "huggingface-hub (>=0.14.1,<1.0)", "importlib-metadata", "numpy (>=1.17)", "packaging (>=20.0)", "protobuf (<=3.20.3)", "regex (!=2019.12.17)", "requests", "sentencepiece (>=0.1.91,!=0.1.92)", "tokenizers (>=0.11.1,!=0.11.3,<0.14)", "torch (>=1.9,!=1.12.0)", "tqdm (>=4.27)"]
video = ["av (==9.2.0)", "decord (==0.6.0)"]
vision = ["Pillow"]
[[package]]
name = "typer"
version = "0.6.1"
description = "Typer, build great CLIs. Easy to code. Based on Python type hints."
optional = false
python-versions = ">=3.6"
files = [
2022-10-08 04:30:12 -06:00
{file = "typer-0.6.1-py3-none-any.whl", hash = "sha256:54b19e5df18654070a82f8c2aa1da456a4ac16a2a83e6dcd9f170e291c56338e"},
{file = "typer-0.6.1.tar.gz", hash = "sha256:2d5720a5e63f73eaf31edaa15f6ab87f35f0690f8ca233017d7d23d743a91d73"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.dependencies]
click = ">=7.1.1,<9.0.0"
[package.extras]
all = ["colorama (>=0.4.3,<0.5.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
dev = ["autoflake (>=1.3.1,<2.0.0)", "flake8 (>=3.8.3,<4.0.0)", "pre-commit (>=2.17.0,<3.0.0)"]
doc = ["mdx-include (>=1.4.1,<2.0.0)", "mkdocs (>=1.1.2,<2.0.0)", "mkdocs-material (>=8.1.4,<9.0.0)"]
test = ["black (>=22.3.0,<23.0.0)", "coverage (>=5.2,<6.0)", "isort (>=5.0.6,<6.0.0)", "mypy (==0.910)", "pytest (>=4.4.0,<5.4.0)", "pytest-cov (>=2.10.0,<3.0.0)", "pytest-sugar (>=0.9.4,<0.10.0)", "pytest-xdist (>=1.32.0,<2.0.0)", "rich (>=10.11.0,<13.0.0)", "shellingham (>=1.3.0,<2.0.0)"]
[[package]]
name = "typing-extensions"
version = "4.6.3"
description = "Backported and Experimental Type Hints for Python 3.7+"
optional = false
python-versions = ">=3.7"
files = [
{file = "typing_extensions-4.6.3-py3-none-any.whl", hash = "sha256:88a4153d8505aabbb4e13aacb7c486c2b4a33ca3b3f807914a9b4c844c471c26"},
{file = "typing_extensions-4.6.3.tar.gz", hash = "sha256:d91d5919357fe7f681a9f2b5b4cb2a5f1ef0a1e9f59c4d8ff0d3491e05c0ffd5"},
2022-10-08 04:30:12 -06:00
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[[package]]
name = "urllib3"
version = "2.0.3"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=3.7"
files = [
{file = "urllib3-2.0.3-py3-none-any.whl", hash = "sha256:48e7fafa40319d358848e1bc6809b208340fafe2096f1725d05d67443d0483d1"},
{file = "urllib3-2.0.3.tar.gz", hash = "sha256:bee28b5e56addb8226c96f7f13ac28cb4c301dd5ea8a6ca179c0b9835e032825"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.extras]
brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"]
secure = ["certifi", "cryptography (>=1.9)", "idna (>=2.0.0)", "pyopenssl (>=17.1.0)", "urllib3-secure-extra"]
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "win32-setctime"
version = "1.1.0"
description = "A small Python utility to set file creation time on Windows"
optional = false
python-versions = ">=3.5"
files = [
{file = "win32_setctime-1.1.0-py3-none-any.whl", hash = "sha256:231db239e959c2fe7eb1d7dc129f11172354f98361c4fa2d6d2d7e278baa8aad"},
{file = "win32_setctime-1.1.0.tar.gz", hash = "sha256:15cf5750465118d6929ae4de4eb46e8edae9a5634350c01ba582df868e932cb2"},
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[package.extras]
dev = ["black (>=19.3b0)", "pytest (>=4.6.2)"]
[[package]]
name = "wrapt"
version = "1.15.0"
description = "Module for decorators, wrappers and monkey patching."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,>=2.7"
files = [
{file = "wrapt-1.15.0-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:ca1cccf838cd28d5a0883b342474c630ac48cac5df0ee6eacc9c7290f76b11c1"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:e826aadda3cae59295b95343db8f3d965fb31059da7de01ee8d1c40a60398b29"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:5fc8e02f5984a55d2c653f5fea93531e9836abbd84342c1d1e17abc4a15084c2"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:96e25c8603a155559231c19c0349245eeb4ac0096fe3c1d0be5c47e075bd4f46"},
{file = "wrapt-1.15.0-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:40737a081d7497efea35ab9304b829b857f21558acfc7b3272f908d33b0d9d4c"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:f87ec75864c37c4c6cb908d282e1969e79763e0d9becdfe9fe5473b7bb1e5f09"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:1286eb30261894e4c70d124d44b7fd07825340869945c79d05bda53a40caa079"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_i686.whl", hash = "sha256:493d389a2b63c88ad56cdc35d0fa5752daac56ca755805b1b0c530f785767d5e"},
{file = "wrapt-1.15.0-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:58d7a75d731e8c63614222bcb21dd992b4ab01a399f1f09dd82af17bbfc2368a"},
{file = "wrapt-1.15.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:21f6d9a0d5b3a207cdf7acf8e58d7d13d463e639f0c7e01d82cdb671e6cb7923"},
{file = "wrapt-1.15.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ce42618f67741d4697684e501ef02f29e758a123aa2d669e2d964ff734ee00ee"},
{file = "wrapt-1.15.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41d07d029dd4157ae27beab04d22b8e261eddfc6ecd64ff7000b10dc8b3a5727"},
{file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:54accd4b8bc202966bafafd16e69da9d5640ff92389d33d28555c5fd4f25ccb7"},
{file = "wrapt-1.15.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2fbfbca668dd15b744418265a9607baa970c347eefd0db6a518aaf0cfbd153c0"},
{file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:76e9c727a874b4856d11a32fb0b389afc61ce8aaf281ada613713ddeadd1cfec"},
{file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e20076a211cd6f9b44a6be58f7eeafa7ab5720eb796975d0c03f05b47d89eb90"},
{file = "wrapt-1.15.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a74d56552ddbde46c246b5b89199cb3fd182f9c346c784e1a93e4dc3f5ec9975"},
{file = "wrapt-1.15.0-cp310-cp310-win32.whl", hash = "sha256:26458da5653aa5b3d8dc8b24192f574a58984c749401f98fff994d41d3f08da1"},
{file = "wrapt-1.15.0-cp310-cp310-win_amd64.whl", hash = "sha256:75760a47c06b5974aa5e01949bf7e66d2af4d08cb8c1d6516af5e39595397f5e"},
{file = "wrapt-1.15.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ba1711cda2d30634a7e452fc79eabcadaffedf241ff206db2ee93dd2c89a60e7"},
{file = "wrapt-1.15.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:56374914b132c702aa9aa9959c550004b8847148f95e1b824772d453ac204a72"},
{file = "wrapt-1.15.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a89ce3fd220ff144bd9d54da333ec0de0399b52c9ac3d2ce34b569cf1a5748fb"},
{file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3bbe623731d03b186b3d6b0d6f51865bf598587c38d6f7b0be2e27414f7f214e"},
{file = "wrapt-1.15.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3abbe948c3cbde2689370a262a8d04e32ec2dd4f27103669a45c6929bcdbfe7c"},
{file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:b67b819628e3b748fd3c2192c15fb951f549d0f47c0449af0764d7647302fda3"},
{file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:7eebcdbe3677e58dd4c0e03b4f2cfa346ed4049687d839adad68cc38bb559c92"},
{file = "wrapt-1.15.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:74934ebd71950e3db69960a7da29204f89624dde411afbfb3b4858c1409b1e98"},
{file = "wrapt-1.15.0-cp311-cp311-win32.whl", hash = "sha256:bd84395aab8e4d36263cd1b9308cd504f6cf713b7d6d3ce25ea55670baec5416"},
{file = "wrapt-1.15.0-cp311-cp311-win_amd64.whl", hash = "sha256:a487f72a25904e2b4bbc0817ce7a8de94363bd7e79890510174da9d901c38705"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux1_i686.whl", hash = "sha256:4ff0d20f2e670800d3ed2b220d40984162089a6e2c9646fdb09b85e6f9a8fc29"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux1_x86_64.whl", hash = "sha256:9ed6aa0726b9b60911f4aed8ec5b8dd7bf3491476015819f56473ffaef8959bd"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_i686.whl", hash = "sha256:896689fddba4f23ef7c718279e42f8834041a21342d95e56922e1c10c0cc7afb"},
{file = "wrapt-1.15.0-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:75669d77bb2c071333417617a235324a1618dba66f82a750362eccbe5b61d248"},
{file = "wrapt-1.15.0-cp35-cp35m-win32.whl", hash = "sha256:fbec11614dba0424ca72f4e8ba3c420dba07b4a7c206c8c8e4e73f2e98f4c559"},
{file = "wrapt-1.15.0-cp35-cp35m-win_amd64.whl", hash = "sha256:fd69666217b62fa5d7c6aa88e507493a34dec4fa20c5bd925e4bc12fce586639"},
{file = "wrapt-1.15.0-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:b0724f05c396b0a4c36a3226c31648385deb6a65d8992644c12a4963c70326ba"},
{file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bbeccb1aa40ab88cd29e6c7d8585582c99548f55f9b2581dfc5ba68c59a85752"},
{file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:38adf7198f8f154502883242f9fe7333ab05a5b02de7d83aa2d88ea621f13364"},
{file = "wrapt-1.15.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:578383d740457fa790fdf85e6d346fda1416a40549fe8db08e5e9bd281c6a475"},
{file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:a4cbb9ff5795cd66f0066bdf5947f170f5d63a9274f99bdbca02fd973adcf2a8"},
{file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_i686.whl", hash = "sha256:af5bd9ccb188f6a5fdda9f1f09d9f4c86cc8a539bd48a0bfdc97723970348418"},
{file = "wrapt-1.15.0-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:b56d5519e470d3f2fe4aa7585f0632b060d532d0696c5bdfb5e8319e1d0f69a2"},
{file = "wrapt-1.15.0-cp36-cp36m-win32.whl", hash = "sha256:77d4c1b881076c3ba173484dfa53d3582c1c8ff1f914c6461ab70c8428b796c1"},
{file = "wrapt-1.15.0-cp36-cp36m-win_amd64.whl", hash = "sha256:077ff0d1f9d9e4ce6476c1a924a3332452c1406e59d90a2cf24aeb29eeac9420"},
{file = "wrapt-1.15.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5c5aa28df055697d7c37d2099a7bc09f559d5053c3349b1ad0c39000e611d317"},
{file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3a8564f283394634a7a7054b7983e47dbf39c07712d7b177b37e03f2467a024e"},
{file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:780c82a41dc493b62fc5884fb1d3a3b81106642c5c5c78d6a0d4cbe96d62ba7e"},
{file = "wrapt-1.15.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e169e957c33576f47e21864cf3fc9ff47c223a4ebca8960079b8bd36cb014fd0"},
{file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:b02f21c1e2074943312d03d243ac4388319f2456576b2c6023041c4d57cd7019"},
{file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:f2e69b3ed24544b0d3dbe2c5c0ba5153ce50dcebb576fdc4696d52aa22db6034"},
{file = "wrapt-1.15.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:d787272ed958a05b2c86311d3a4135d3c2aeea4fc655705f074130aa57d71653"},
{file = "wrapt-1.15.0-cp37-cp37m-win32.whl", hash = "sha256:02fce1852f755f44f95af51f69d22e45080102e9d00258053b79367d07af39c0"},
{file = "wrapt-1.15.0-cp37-cp37m-win_amd64.whl", hash = "sha256:abd52a09d03adf9c763d706df707c343293d5d106aea53483e0ec8d9e310ad5e"},
{file = "wrapt-1.15.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cdb4f085756c96a3af04e6eca7f08b1345e94b53af8921b25c72f096e704e145"},
{file = "wrapt-1.15.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:230ae493696a371f1dbffaad3dafbb742a4d27a0afd2b1aecebe52b740167e7f"},
{file = "wrapt-1.15.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:63424c681923b9f3bfbc5e3205aafe790904053d42ddcc08542181a30a7a51bd"},
{file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d6bcbfc99f55655c3d93feb7ef3800bd5bbe963a755687cbf1f490a71fb7794b"},
{file = "wrapt-1.15.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c99f4309f5145b93eca6e35ac1a988f0dc0a7ccf9ccdcd78d3c0adf57224e62f"},
{file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b130fe77361d6771ecf5a219d8e0817d61b236b7d8b37cc045172e574ed219e6"},
{file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:96177eb5645b1c6985f5c11d03fc2dbda9ad24ec0f3a46dcce91445747e15094"},
{file = "wrapt-1.15.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d5fe3e099cf07d0fb5a1e23d399e5d4d1ca3e6dfcbe5c8570ccff3e9208274f7"},
{file = "wrapt-1.15.0-cp38-cp38-win32.whl", hash = "sha256:abd8f36c99512755b8456047b7be10372fca271bf1467a1caa88db991e7c421b"},
{file = "wrapt-1.15.0-cp38-cp38-win_amd64.whl", hash = "sha256:b06fa97478a5f478fb05e1980980a7cdf2712015493b44d0c87606c1513ed5b1"},
{file = "wrapt-1.15.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2e51de54d4fb8fb50d6ee8327f9828306a959ae394d3e01a1ba8b2f937747d86"},
{file = "wrapt-1.15.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0970ddb69bba00670e58955f8019bec4a42d1785db3faa043c33d81de2bf843c"},
{file = "wrapt-1.15.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76407ab327158c510f44ded207e2f76b657303e17cb7a572ffe2f5a8a48aa04d"},
{file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cd525e0e52a5ff16653a3fc9e3dd827981917d34996600bbc34c05d048ca35cc"},
{file = "wrapt-1.15.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9d37ac69edc5614b90516807de32d08cb8e7b12260a285ee330955604ed9dd29"},
{file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:078e2a1a86544e644a68422f881c48b84fef6d18f8c7a957ffd3f2e0a74a0d4a"},
{file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:2cf56d0e237280baed46f0b5316661da892565ff58309d4d2ed7dba763d984b8"},
{file = "wrapt-1.15.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:7dc0713bf81287a00516ef43137273b23ee414fe41a3c14be10dd95ed98a2df9"},
{file = "wrapt-1.15.0-cp39-cp39-win32.whl", hash = "sha256:46ed616d5fb42f98630ed70c3529541408166c22cdfd4540b88d5f21006b0eff"},
{file = "wrapt-1.15.0-cp39-cp39-win_amd64.whl", hash = "sha256:eef4d64c650f33347c1f9266fa5ae001440b232ad9b98f1f43dfe7a79435c0a6"},
{file = "wrapt-1.15.0-py3-none-any.whl", hash = "sha256:64b1df0f83706b4ef4cfb4fb0e4c2669100fd7ecacfb59e091fad300d4e04640"},
{file = "wrapt-1.15.0.tar.gz", hash = "sha256:d06730c6aed78cee4126234cf2d071e01b44b915e725a6cb439a879ec9754a3a"},
2023-02-13 05:02:45 -07:00
]
feat(server): Add inference support for GPTQ (llama + falcon tested) + Quantization script (#438) Let's start discussing implementation. - Need to expose the quantization scripts (either included here or add doc on how to use https://github.com/qwopqwop200/GPTQ-for-LLaMa) - Make sure GPTQ works for multiple models (priority to Falcon). Currently it means that every place we use `get_{tensor|sharded}` to check for quantization. My idea is to reintegrate as much as possible into `utils/layer.py` by expanding `load_multi` to be a bit more generic. This might require some thinking, but ultimately the `qweight,qzeros,scales,g_idx` should be in a single place, and independant of bias presence. # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Co-authored-by: Ubuntu <ubuntu@ip-172-31-41-161.ec2.internal> Co-authored-by: OlivierDehaene <olivier@huggingface.co>
2023-06-26 04:27:01 -06:00
[extras]
accelerate = ["accelerate"]
bnb = ["bitsandbytes"]
[metadata]
lock-version = "2.0"
python-versions = "^3.9"
content-hash = "3174a211d30bed5990ed5f8418416c951bb6c585153fb51b62809baa89ef07d0"