91 lines
2.7 KiB
Python
91 lines
2.7 KiB
Python
|
import torch
|
||
|
import torch.distributed
|
||
|
|
||
|
from typing import Optional, Type
|
||
|
from opentelemetry import trace
|
||
|
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerBase
|
||
|
from huggingface_hub import hf_hub_download
|
||
|
import json
|
||
|
|
||
|
from text_generation_server.models import CausalLM
|
||
|
from text_generation_server.models.causal_lm import CausalLMBatch
|
||
|
from text_generation_server.pb import generate_pb2
|
||
|
from text_generation_server.models.custom_modeling.mpt_modeling import (
|
||
|
MPTForCausalLM,
|
||
|
)
|
||
|
from text_generation_server.utils import (
|
||
|
initialize_torch_distributed,
|
||
|
weight_files,
|
||
|
Weights,
|
||
|
)
|
||
|
|
||
|
tracer = trace.get_tracer(__name__)
|
||
|
|
||
|
|
||
|
class MPTCausalLMBatch(CausalLMBatch):
|
||
|
@classmethod
|
||
|
def from_pb(
|
||
|
cls,
|
||
|
pb: generate_pb2.Batch,
|
||
|
tokenizer: PreTrainedTokenizerBase,
|
||
|
dtype: torch.dtype,
|
||
|
device: torch.device,
|
||
|
) -> "CausalLMBatch":
|
||
|
batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device)
|
||
|
batch.keys_head_dim_last = False
|
||
|
return batch
|
||
|
|
||
|
|
||
|
class MPTSharded(CausalLM):
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_id: str,
|
||
|
revision: Optional[str] = None,
|
||
|
quantize: Optional[str] = None,
|
||
|
trust_remote_code: bool = False,
|
||
|
):
|
||
|
self.process_group, rank, world_size = initialize_torch_distributed()
|
||
|
if torch.cuda.is_available():
|
||
|
device = torch.device(f"cuda:{rank}")
|
||
|
dtype = torch.float16
|
||
|
else:
|
||
|
raise NotImplementedError("MPTSharded is only available on GPU")
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||
|
model_id,
|
||
|
revision=revision,
|
||
|
padding_side="left",
|
||
|
truncation_side="left",
|
||
|
trust_remote_code=trust_remote_code,
|
||
|
)
|
||
|
tokenizer.pad_token = tokenizer.eos_token
|
||
|
|
||
|
filename = hf_hub_download(model_id, revision=revision, filename="config.json")
|
||
|
with open(filename, "r") as f:
|
||
|
config = json.load(f)
|
||
|
config = PretrainedConfig(**config)
|
||
|
config.quantize = quantize
|
||
|
|
||
|
torch.distributed.barrier(group=self.process_group)
|
||
|
|
||
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||
|
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
||
|
|
||
|
config.quantize = quantize
|
||
|
model = MPTForCausalLM(config, weights)
|
||
|
|
||
|
torch.distributed.barrier(group=self.process_group)
|
||
|
super(CausalLM, self).__init__(
|
||
|
model=model,
|
||
|
tokenizer=tokenizer,
|
||
|
requires_padding=False,
|
||
|
dtype=dtype,
|
||
|
device=device,
|
||
|
rank=rank,
|
||
|
world_size=world_size,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def batch_type(self) -> Type[CausalLMBatch]:
|
||
|
return MPTCausalLMBatch
|