2024-07-20 11:02:04 -06:00
|
|
|
import torch
|
|
|
|
|
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights
Handling of quantized weights was split between two mechanisms:
- For quantized checkpoints, we used the new weight loader
infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
instead relied on conditional in `get_linear`.
Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.
This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:
- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
`get_linear` does not need to know how to handle quantizer linear
layers.
- All quantizer weights are strongly typed, we don't pass around
raw tensors.
- We don't have to pass around the `quantizer` string everywhere.
* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 01:37:39 -06:00
|
|
|
from dataclasses import dataclass
|
2024-07-20 11:02:04 -06:00
|
|
|
from typing import Optional, Union, List
|
|
|
|
from loguru import logger
|
2024-07-11 08:03:26 -06:00
|
|
|
|
|
|
|
from text_generation_server.utils.import_utils import SYSTEM
|
2024-07-20 11:02:04 -06:00
|
|
|
from text_generation_server.utils.weights import (
|
|
|
|
Weight,
|
|
|
|
WeightsLoader,
|
|
|
|
UnquantizedWeight,
|
|
|
|
Weights,
|
|
|
|
)
|
|
|
|
from text_generation_server.utils.log import log_master, log_once
|
2024-07-26 08:29:09 -06:00
|
|
|
import importlib.util
|
|
|
|
|
2024-07-20 11:02:04 -06:00
|
|
|
|
|
|
|
FBGEMM_MM_AVAILABLE = False
|
|
|
|
FBGEMM_DYN_AVAILABLE = False
|
|
|
|
|
2024-07-26 08:29:09 -06:00
|
|
|
|
|
|
|
def is_fbgemm_gpu_available():
|
|
|
|
try:
|
|
|
|
return importlib.util.find_spec("fbgemm_gpu.experimental.gen_ai") is not None
|
|
|
|
except ModuleNotFoundError:
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
if is_fbgemm_gpu_available():
|
2024-07-20 11:02:04 -06:00
|
|
|
if SYSTEM == "cuda":
|
|
|
|
major, _ = torch.cuda.get_device_capability()
|
|
|
|
FBGEMM_MM_AVAILABLE = major == 9
|
|
|
|
FBGEMM_DYN_AVAILABLE = major >= 8
|
2024-07-26 08:29:09 -06:00
|
|
|
else:
|
2024-07-20 11:02:04 -06:00
|
|
|
log_master(logger.warning, "FBGEMM fp8 kernels are not installed.")
|
2024-07-11 08:03:26 -06:00
|
|
|
|
|
|
|
|
|
|
|
def get_fp8_linear() -> torch.nn.Module:
|
|
|
|
"""
|
|
|
|
Return an FP8 linear `Module` that is compatible with the current system.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if SYSTEM == "cuda":
|
2024-07-23 03:24:29 -06:00
|
|
|
major, _ = torch.cuda.get_device_capability()
|
|
|
|
if major == 8:
|
2024-07-11 08:03:26 -06:00
|
|
|
from text_generation_server.layers.marlin import GPTQMarlinFP8Linear
|
|
|
|
|
|
|
|
return GPTQMarlinFP8Linear
|
|
|
|
|
|
|
|
# On other systems let Torch decide if the hardware supports FP8.
|
|
|
|
return Fp8Linear
|
2024-05-13 04:44:30 -06:00
|
|
|
|
|
|
|
|
2024-07-23 03:24:29 -06:00
|
|
|
def fp8_quantize(
|
|
|
|
weight, scale_upper_bound=None, qdtype=torch.float8_e4m3fn, scalar=False
|
|
|
|
):
|
|
|
|
if FBGEMM_DYN_AVAILABLE and not scalar:
|
2024-07-20 11:02:04 -06:00
|
|
|
qweight, scale = torch.ops.fbgemm.quantize_fp8_per_row(
|
|
|
|
weight, bs=None, scale_ub=scale_upper_bound, output_dtype=qdtype
|
|
|
|
)
|
|
|
|
return qweight, scale
|
|
|
|
|
2024-05-13 04:44:30 -06:00
|
|
|
# weight, scale = quant_weights(weight, torch.int8, False)
|
|
|
|
finfo = torch.finfo(qdtype)
|
|
|
|
# Calculate the scale as dtype max divided by absmax
|
2024-07-20 11:02:04 -06:00
|
|
|
scale = finfo.max / weight.abs().max().clamp(min=1e-12, max=scale_upper_bound)
|
2024-05-13 04:44:30 -06:00
|
|
|
# scale and clamp the tensor to bring it to
|
|
|
|
# the representative range of float8 data type
|
|
|
|
# (as default cast is unsaturated)
|
|
|
|
qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
|
|
|
|
# Return both float8 data and the inverse scale (as float),
|
|
|
|
# as both required as inputs to torch._scaled_mm
|
|
|
|
qweight = qweight.to(qdtype)
|
|
|
|
scale = scale.float().reciprocal()
|
|
|
|
return qweight, scale
|
|
|
|
|
|
|
|
|
2024-07-20 11:02:04 -06:00
|
|
|
class HybridFP8UnquantLoader(WeightsLoader):
|
|
|
|
"""Weight loader that loads FP8 and unquantized Torch tensors."""
|
|
|
|
|
|
|
|
def __init__(self, activation_scale_ub: Optional[float], to_fp8: bool):
|
|
|
|
self.activation_scale_ub = activation_scale_ub
|
|
|
|
self.to_fp8 = to_fp8
|
|
|
|
|
|
|
|
def get_weights(self, weights: "Weights", prefix: str):
|
|
|
|
w = weights.get_tensor(f"{prefix}.weight")
|
|
|
|
|
|
|
|
if w.dtype == torch.float8_e4m3fn:
|
|
|
|
# FP8 branch
|
2024-09-24 05:57:40 -06:00
|
|
|
scale = (
|
|
|
|
weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
|
|
|
|
.reshape(-1)
|
|
|
|
.expand(w.shape[0])
|
|
|
|
)
|
2024-07-20 11:02:04 -06:00
|
|
|
return Fp8Weight(
|
|
|
|
weight=w,
|
|
|
|
weight_scale=scale,
|
|
|
|
activation_scale_ub=self.activation_scale_ub,
|
|
|
|
dtype=weights.dtype,
|
|
|
|
)
|
|
|
|
if self.to_fp8:
|
|
|
|
return Fp8Weight(weight=w, dtype=weights.dtype)
|
|
|
|
|
|
|
|
return UnquantizedWeight(w)
|
|
|
|
|
|
|
|
def get_weights_col_packed(
|
|
|
|
self,
|
|
|
|
weights: Weights,
|
|
|
|
prefix: str,
|
|
|
|
block_sizes: Union[int, List[int]],
|
|
|
|
):
|
|
|
|
w = weights.get_packed_sharded(
|
|
|
|
f"{prefix}.weight", dim=0, block_sizes=block_sizes
|
|
|
|
)
|
|
|
|
|
|
|
|
if w.dtype == torch.float8_e4m3fn:
|
|
|
|
# FP8 branch
|
2024-09-24 05:57:40 -06:00
|
|
|
scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
|
|
|
|
if scale.numel() > 1:
|
|
|
|
scale = weights.get_packed_sharded(
|
|
|
|
f"{prefix}.weight_scale",
|
|
|
|
dim=0,
|
|
|
|
block_sizes=block_sizes,
|
|
|
|
to_dtype=False,
|
|
|
|
)
|
|
|
|
scale = scale.reshape(-1).expand(w.shape[0])
|
|
|
|
|
2024-07-20 11:02:04 -06:00
|
|
|
return Fp8Weight(
|
|
|
|
weight=w,
|
|
|
|
weight_scale=scale,
|
|
|
|
activation_scale_ub=self.activation_scale_ub,
|
|
|
|
dtype=weights.dtype,
|
|
|
|
)
|
|
|
|
if self.to_fp8:
|
|
|
|
return Fp8Weight(weight=w, dtype=weights.dtype)
|
|
|
|
|
|
|
|
return UnquantizedWeight(w)
|
|
|
|
|
|
|
|
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
|
2024-07-22 09:51:32 -06:00
|
|
|
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
|
|
|
|
w = [
|
|
|
|
weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes
|
|
|
|
]
|
2024-09-24 05:57:40 -06:00
|
|
|
shapes = [x.shape for x in w]
|
|
|
|
|
2024-07-22 09:51:32 -06:00
|
|
|
# Concat then send to the device
|
|
|
|
w = torch.cat(w, dim=dim).to(weights.device)
|
2024-07-20 11:02:04 -06:00
|
|
|
|
|
|
|
# FP8 branch
|
|
|
|
if w.dtype == torch.float8_e4m3fn:
|
|
|
|
scale = [
|
2024-09-24 05:57:40 -06:00
|
|
|
_load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape)
|
|
|
|
for p, shape in zip(prefixes, shapes)
|
2024-07-20 11:02:04 -06:00
|
|
|
]
|
2024-07-22 09:51:32 -06:00
|
|
|
scale = torch.cat(scale, dim=0).reshape(-1)
|
2024-09-24 05:57:40 -06:00
|
|
|
|
2024-07-20 11:02:04 -06:00
|
|
|
return Fp8Weight(
|
|
|
|
weight=w,
|
|
|
|
weight_scale=scale,
|
|
|
|
activation_scale_ub=self.activation_scale_ub,
|
|
|
|
dtype=weights.dtype,
|
|
|
|
)
|
|
|
|
if self.to_fp8:
|
|
|
|
return Fp8Weight(weight=w, dtype=weights.dtype)
|
|
|
|
|
|
|
|
return UnquantizedWeight(w)
|
|
|
|
|
|
|
|
def get_weights_row(self, weights: "Weights", prefix: str):
|
|
|
|
w = weights.get_sharded(f"{prefix}.weight", dim=1)
|
|
|
|
# FP8 branch
|
|
|
|
if w.dtype == torch.float8_e4m3fn:
|
2024-09-24 05:57:40 -06:00
|
|
|
scale = (
|
|
|
|
weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
|
|
|
|
.reshape(-1)
|
|
|
|
.expand(w.shape[0])
|
|
|
|
)
|
2024-07-20 11:02:04 -06:00
|
|
|
return Fp8Weight(
|
|
|
|
weight=w,
|
|
|
|
weight_scale=scale,
|
|
|
|
activation_scale_ub=self.activation_scale_ub,
|
|
|
|
dtype=weights.dtype,
|
|
|
|
)
|
|
|
|
if self.to_fp8:
|
|
|
|
return Fp8Weight(weight=w, dtype=weights.dtype)
|
|
|
|
|
|
|
|
return UnquantizedWeight(w)
|
|
|
|
|
|
|
|
|
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights
Handling of quantized weights was split between two mechanisms:
- For quantized checkpoints, we used the new weight loader
infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
instead relied on conditional in `get_linear`.
Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.
This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:
- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
`get_linear` does not need to know how to handle quantizer linear
layers.
- All quantizer weights are strongly typed, we don't pass around
raw tensors.
- We don't have to pass around the `quantizer` string everywhere.
* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 01:37:39 -06:00
|
|
|
@dataclass
|
|
|
|
class Fp8Weight(Weight):
|
|
|
|
weight: torch.Tensor
|
2024-07-20 11:02:04 -06:00
|
|
|
dtype: torch.dtype
|
|
|
|
weight_scale: Optional[torch.Tensor] = None
|
|
|
|
activation_scale_ub: Optional[float] = None
|
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights
Handling of quantized weights was split between two mechanisms:
- For quantized checkpoints, we used the new weight loader
infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
instead relied on conditional in `get_linear`.
Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.
This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:
- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
`get_linear` does not need to know how to handle quantizer linear
layers.
- All quantizer weights are strongly typed, we don't pass around
raw tensors.
- We don't have to pass around the `quantizer` string everywhere.
* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 01:37:39 -06:00
|
|
|
|
|
|
|
def get_linear(self, bias: torch.Tensor):
|
2024-07-20 11:02:04 -06:00
|
|
|
if self.weight_scale is None:
|
|
|
|
return get_fp8_linear().from_unquant(self.weight, bias, self.dtype)
|
2024-09-24 05:57:40 -06:00
|
|
|
# This is not checked by the fbgemm kernels, but they require contiguous
|
|
|
|
# memory. Can be non-contiguous when we e.g. expand from scalars.
|
|
|
|
self.weight_scale = self.weight_scale.contiguous()
|
2024-07-20 11:02:04 -06:00
|
|
|
return get_fp8_linear().from_fp8(
|
|
|
|
self.weight, self.weight_scale, self.activation_scale_ub, bias, self.dtype
|
|
|
|
)
|
Improve the handling of quantized weights (#2250)
* Improve the handling of quantized weights
Handling of quantized weights was split between two mechanisms:
- For quantized checkpoints, we used the new weight loader
infrastructure.
- For quantization while loading (EETQ, FP8, bitsandbytes) we
instead relied on conditional in `get_linear`.
Weight loaders support context managers to selectively load
particular layers with different weight loaders, which is useful
for models like Idefics2 AWQ, which uses a quantized text model,
but unquantized vision and connector models. However, the context
manager would be overrided by `get_linear`, which string-checks
`quantizer`. Also, the context manager would not work with
EETQ, FP8, and bitsandbytes.
This change migrates all quantizers to the weight loader infrastructure.
This has several benefits:
- We can use context managers with all quantizers.
- All the implementation details move down to the quantizer layers,
`get_linear` does not need to know how to handle quantizer linear
layers.
- All quantizer weights are strongly typed, we don't pass around
raw tensors.
- We don't have to pass around the `quantizer` string everywhere.
* Exclude non-MLP layers when using FP8 quantization with Llama
2024-07-19 01:37:39 -06:00
|
|
|
|
|
|
|
|
2024-05-13 04:44:30 -06:00
|
|
|
class Fp8Linear(torch.nn.Module):
|
|
|
|
def __init__(
|
|
|
|
self,
|
2024-07-20 11:02:04 -06:00
|
|
|
qweight,
|
|
|
|
scale,
|
|
|
|
scale_upper_bound,
|
2024-05-13 04:44:30 -06:00
|
|
|
bias,
|
2024-07-20 11:02:04 -06:00
|
|
|
dtype,
|
2024-05-13 04:44:30 -06:00
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
2024-07-23 03:24:29 -06:00
|
|
|
if FBGEMM_MM_AVAILABLE:
|
|
|
|
log_once(logger.info, "Using FBGEMM fp8 optimized kernels")
|
|
|
|
|
2024-07-20 11:02:04 -06:00
|
|
|
self.dtype = dtype
|
|
|
|
self.qweight = qweight
|
|
|
|
self.scale = scale
|
|
|
|
self.scale_upper_bound = (
|
|
|
|
torch.tensor(
|
|
|
|
[scale_upper_bound], dtype=torch.float32, device=qweight.device
|
|
|
|
)
|
|
|
|
if scale_upper_bound is not None
|
|
|
|
else None
|
|
|
|
)
|
2024-05-13 04:44:30 -06:00
|
|
|
|
|
|
|
self.bias = bias if bias is not None else None
|
|
|
|
|
2024-07-20 11:02:04 -06:00
|
|
|
@classmethod
|
|
|
|
def from_unquant(cls, weight, bias, dtype):
|
2024-07-23 03:24:29 -06:00
|
|
|
qweight, scale = fp8_quantize(weight, scalar=not FBGEMM_MM_AVAILABLE)
|
2024-07-20 11:02:04 -06:00
|
|
|
return cls(
|
|
|
|
qweight=qweight, scale=scale, scale_upper_bound=None, bias=bias, dtype=dtype
|
|
|
|
)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_fp8(cls, weight, scale, input_scale, bias, dtype):
|
2024-09-24 05:57:40 -06:00
|
|
|
if FBGEMM_DYN_AVAILABLE:
|
|
|
|
# fbgemm needs float32 scales.
|
|
|
|
scale = scale.float()
|
2024-07-20 11:02:04 -06:00
|
|
|
return cls(
|
|
|
|
qweight=weight,
|
|
|
|
scale=scale,
|
|
|
|
scale_upper_bound=input_scale,
|
|
|
|
bias=bias,
|
|
|
|
dtype=dtype,
|
|
|
|
)
|
|
|
|
|
2024-05-13 04:44:30 -06:00
|
|
|
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
2024-07-20 11:02:04 -06:00
|
|
|
if FBGEMM_MM_AVAILABLE:
|
|
|
|
qinput, scale = fp8_quantize(
|
|
|
|
input, scale_upper_bound=self.scale_upper_bound
|
|
|
|
)
|
|
|
|
|
|
|
|
y = torch.ops.fbgemm.f8f8bf16_rowwise(
|
|
|
|
qinput,
|
|
|
|
self.qweight,
|
|
|
|
scale,
|
|
|
|
self.scale,
|
|
|
|
use_fast_accum=True,
|
|
|
|
bias=self.bias,
|
|
|
|
)
|
|
|
|
return y.to(self.dtype)
|
|
|
|
|
2024-07-23 03:24:29 -06:00
|
|
|
qinput, scale = fp8_quantize(input, scalar=True)
|
2024-05-13 04:44:30 -06:00
|
|
|
output, _ = torch._scaled_mm(
|
|
|
|
qinput,
|
|
|
|
self.qweight.t(),
|
|
|
|
out_dtype=self.dtype,
|
|
|
|
scale_a=scale,
|
|
|
|
scale_b=self.scale,
|
|
|
|
bias=self.bias,
|
|
|
|
)
|
|
|
|
return output
|
2024-09-24 05:57:40 -06:00
|
|
|
|
|
|
|
|
|
|
|
def _load_scalar_or_matrix_scale(weights: Weights, prefix: str, shape: torch.Size):
|
|
|
|
scale = weights.get_tensor(prefix, to_dtype=False)
|
|
|
|
if scale.numel() > 1:
|
|
|
|
scale = weights.get_sharded(prefix, dim=0, to_dtype=False)
|
|
|
|
return scale.reshape(-1).expand(shape[0])
|