feat(server): flash neoX (#133)
This commit is contained in:
parent
23e1028822
commit
05e9a796cc
|
@ -20,6 +20,10 @@ on:
|
|||
branches:
|
||||
- 'main'
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build-and-push-image:
|
||||
runs-on: ubuntu-latest
|
||||
|
|
|
@ -11,6 +11,10 @@ on:
|
|||
- "Cargo.lock"
|
||||
- "rust-toolchain.toml"
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run_tests:
|
||||
runs-on: ubuntu-20.04
|
||||
|
|
|
@ -43,7 +43,7 @@ ENV LANG=C.UTF-8 \
|
|||
CONDA_DEFAULT_ENV=text-generation \
|
||||
PATH=$PATH:/opt/miniconda/envs/text-generation/bin:/opt/miniconda/bin:/usr/local/cuda/bin
|
||||
|
||||
RUN apt-get update && apt-get install -y unzip curl libssl-dev && rm -rf /var/lib/apt/lists/*
|
||||
RUN apt-get update && apt-get install -y git curl libssl-dev && rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN cd ~ && \
|
||||
curl -L -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
|
||||
|
@ -53,10 +53,13 @@ RUN cd ~ && \
|
|||
|
||||
WORKDIR /usr/src
|
||||
|
||||
# Install torch
|
||||
RUN pip install torch --extra-index-url https://download.pytorch.org/whl/cu118 --no-cache-dir
|
||||
|
||||
COPY server/Makefile server/Makefile
|
||||
|
||||
# Install specific version of torch
|
||||
RUN cd server && make install-torch
|
||||
# Install specific version of flash attention
|
||||
RUN cd server && make install-flash-attention
|
||||
|
||||
# Install specific version of transformers
|
||||
RUN cd server && BUILD_EXTENSIONS="True" make install-transformers
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
transformers_commit := 2b57aa18da658e7d2f42ef6bd5b56751af582fef
|
||||
flash_att_commit := 4d87e4d875077ad9efd25030efa4ab0ba92c19e1
|
||||
|
||||
gen-server:
|
||||
# Compile protos
|
||||
|
@ -12,13 +13,19 @@ install-transformers:
|
|||
# Install specific version of transformers with custom cuda kernels
|
||||
pip uninstall transformers -y || true
|
||||
rm -rf transformers || true
|
||||
rm -rf transformers-$(transformers_commit) || true
|
||||
curl -L -O https://github.com/OlivierDehaene/transformers/archive/$(transformers_commit).zip
|
||||
unzip $(transformers_commit).zip
|
||||
rm $(transformers_commit).zip
|
||||
mv transformers-$(transformers_commit) transformers
|
||||
git clone https://github.com/OlivierDehaene/transformers.git
|
||||
cd transformers && git checkout $(transformers_commit)
|
||||
cd transformers && python setup.py install
|
||||
|
||||
install-flash-attention:
|
||||
# Install specific version of flash attention
|
||||
pip install packaging
|
||||
pip uninstall flash_attn rotary_emb dropout_layer_norm -y || true
|
||||
rm -rf flash-attention || true
|
||||
git clone https://github.com/HazyResearch/flash-attention.git
|
||||
cd flash-attention && git checkout $(flash_att_commit)
|
||||
cd flash-attention && python setup.py install && cd csrc/layer_norm && python setup.py install && cd ../rotary && python setup.py install
|
||||
|
||||
install-torch:
|
||||
# Install specific version of torch
|
||||
pip install torch --extra-index-url https://download.pytorch.org/whl/cu118 --no-cache-dir
|
||||
|
|
|
@ -1,5 +1,7 @@
|
|||
import os
|
||||
import torch
|
||||
|
||||
from loguru import logger
|
||||
from transformers import AutoConfig
|
||||
from typing import Optional
|
||||
|
||||
|
@ -12,6 +14,14 @@ from text_generation_server.models.santacoder import SantaCoder
|
|||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
from text_generation_server.models.t5 import T5Sharded
|
||||
|
||||
try:
|
||||
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
|
||||
FLASH_NEOX = torch.cuda.is_available() and int(os.environ.get("FLASH_NEOX", 0)) == 1
|
||||
except ImportError:
|
||||
if int(os.environ.get("FLASH_NEOX", 0)) == 1:
|
||||
logger.exception("Could not import FlashNeoX")
|
||||
FLASH_NEOX = False
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
"BLOOM",
|
||||
|
@ -26,6 +36,10 @@ __all__ = [
|
|||
"get_model",
|
||||
]
|
||||
|
||||
if FLASH_NEOX:
|
||||
__all__.append(FlashNeoX)
|
||||
__all__.append(FlashNeoXSharded)
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
@ -59,9 +73,11 @@ def get_model(
|
|||
|
||||
if config.model_type == "gpt_neox":
|
||||
if sharded:
|
||||
return GPTNeoxSharded(model_id, revision, quantize=quantize)
|
||||
neox_cls = FlashNeoXSharded if FLASH_NEOX else GPTNeoxSharded
|
||||
return neox_cls(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return CausalLM(model_id, revision, quantize=quantize)
|
||||
neox_cls = FlashNeoX if FLASH_NEOX else CausalLM
|
||||
return neox_cls(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "t5":
|
||||
if sharded:
|
||||
|
|
|
@ -64,7 +64,6 @@ class CausalLMBatch(Batch):
|
|||
inputs = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
input_lengths = []
|
||||
|
||||
# Parse batch
|
||||
padding_right_offset = 0
|
||||
|
|
|
@ -0,0 +1,601 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase, AutoConfig
|
||||
from typing import Optional, Tuple, List, Type, Union
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.flash_neox_modeling import (
|
||||
FlashGPTNeoXForCausalLM,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
)
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
PrefillTokens,
|
||||
Generation,
|
||||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
Sampling,
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
)
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashNeoXBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
|
||||
# Decoder values
|
||||
input_ids: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
# cumulative sequence lengths
|
||||
cu_seqlens: torch.Tensor
|
||||
max_seqlen: int
|
||||
past_key_values: Optional[torch.Tensor]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[List[int]]
|
||||
|
||||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
def to_pb(self) -> generate_pb2.Batch:
|
||||
return generate_pb2.Batch(
|
||||
id=self.batch_id, requests=self.requests, size=len(self)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls,
|
||||
pb: generate_pb2.Batch,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
device: torch.device,
|
||||
) -> "CausalLMBatch":
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
max_seqlen = 0
|
||||
|
||||
input_lengths = []
|
||||
all_input_ids = []
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Parse batch
|
||||
for r in pb.requests:
|
||||
tokenized_input = tokenizer(r.inputs, return_tensors="pt")[
|
||||
"input_ids"
|
||||
].squeeze(0)
|
||||
input_ids.append(tokenized_input)
|
||||
all_input_ids.append(tokenized_input.tolist())
|
||||
|
||||
input_length = len(tokenized_input)
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
input_lengths.append(input_length)
|
||||
|
||||
# Position ids
|
||||
position_ids.append(torch.arange(0, input_length, dtype=torch.int32))
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(cumulative_length + input_length)
|
||||
|
||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||
stopping_criterias.append(
|
||||
StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
|
||||
)
|
||||
|
||||
# Update
|
||||
cumulative_length += input_length
|
||||
|
||||
input_ids = torch.concat(input_ids).unsqueeze(1)
|
||||
position_ids = torch.concat(position_ids)
|
||||
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=None,
|
||||
input_lengths=input_lengths,
|
||||
all_input_ids=all_input_ids,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
||||
# Batch attributes
|
||||
requests = []
|
||||
input_lengths = []
|
||||
all_input_ids = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Batch tensors
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [torch.tensor([0], dtype=torch.int32)]
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = torch.tensor(0)
|
||||
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(batch.cu_seqlens[1:] + cumulative_length)
|
||||
|
||||
input_ids.append(batch.input_ids)
|
||||
position_ids.append(batch.position_ids)
|
||||
past_key_values.append(batch.past_key_values)
|
||||
|
||||
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
||||
|
||||
# Update
|
||||
cumulative_length += batch.cu_seqlens[-1]
|
||||
|
||||
input_ids = torch.concat(input_ids)
|
||||
position_ids = torch.concat(position_ids)
|
||||
# Concat on dim=1 as first dim represents the model layers
|
||||
past_key_values = torch.concat(past_key_values, dim=1)
|
||||
cu_seqlens = torch.concat(cu_seqlens)
|
||||
|
||||
return FlashNeoXBatch(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
all_input_ids=all_input_ids,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.requests)
|
||||
|
||||
|
||||
class FlashNeoX(Model):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashNeoX is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashNeoX does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
self.model = (
|
||||
FlashGPTNeoXForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
)
|
||||
.eval()
|
||||
.cuda()
|
||||
)
|
||||
tokenizer.pad_token_id = (
|
||||
self.model.config.pad_token_id
|
||||
if self.model.config.pad_token_id is not None
|
||||
else self.model.config.eos_token_id
|
||||
)
|
||||
|
||||
super(FlashNeoX, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[FlashNeoXBatch]:
|
||||
return FlashNeoXBatch
|
||||
|
||||
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
max_s: int,
|
||||
past_key_values: Optional = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_s=max_s,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("generate_token")
|
||||
def generate_token(
|
||||
self, batch: FlashNeoXBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashNeoXBatch]]:
|
||||
# Better to send to device here to avoid device issues in concatenate
|
||||
position_ids = batch.position_ids.to(self.device, non_blocking=True)
|
||||
cu_seqlens = batch.cu_seqlens.to(self.device, non_blocking=True)
|
||||
input_ids = batch.input_ids.squeeze(1).to(self.device)
|
||||
|
||||
out, present = self.forward(
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
batch.max_seqlen,
|
||||
batch.past_key_values,
|
||||
)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New values for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_position_ids = []
|
||||
next_batch_cu_seqlens = [0]
|
||||
next_batch_max_seqlen = 0
|
||||
next_batch_past_key_values = []
|
||||
next_batch_input_lengths = []
|
||||
next_batch_all_input_ids = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
) in enumerate(iterator):
|
||||
# Indexing metadata
|
||||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
if batch.past_key_values is None:
|
||||
# Prefill mode
|
||||
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
||||
logits = out[start_index:end_index]
|
||||
else:
|
||||
# Decode mode
|
||||
# out is of shape [batch_size, vocab_size]
|
||||
logits = out[i].unsqueeze(0)
|
||||
|
||||
# Select next token
|
||||
next_token_id, logprobs = next_token_chooser(all_input_ids, logits)
|
||||
# Copy to cpu to avoid other copies when indexing and calling .item()
|
||||
next_token_id = next_token_id.to("cpu", non_blocking=True)
|
||||
logprobs = logprobs.to("cpu")
|
||||
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_id_item = next_token_id_squeezed.item()
|
||||
|
||||
# Append next token to all tokens
|
||||
all_input_ids.append(next_token_id_item)
|
||||
new_input_length = input_length + 1
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_text = self.decode_token(
|
||||
next_token_id_item,
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
stop, reason = stopping_criteria(
|
||||
next_token_id_item,
|
||||
next_token_text,
|
||||
)
|
||||
|
||||
if stop:
|
||||
# Decode generated tokens
|
||||
output_text = self.decode(
|
||||
all_input_ids[-stopping_criteria.current_tokens :]
|
||||
)
|
||||
# Get seed
|
||||
if isinstance(next_token_chooser.choice, Sampling):
|
||||
seed = next_token_chooser.choice.seed
|
||||
else:
|
||||
seed = None
|
||||
|
||||
generated_text = GeneratedText(
|
||||
output_text, stopping_criteria.current_tokens, reason, seed
|
||||
)
|
||||
else:
|
||||
# Keep request in the batch
|
||||
next_batch_keep_indices.append(i)
|
||||
generated_text = None
|
||||
|
||||
# Get sequence present
|
||||
seq_present = present[:, start_index:end_index]
|
||||
# Pad it for next iter attention
|
||||
past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
|
||||
next_batch_past_key_values.append(past)
|
||||
|
||||
next_batch_input_ids.append(next_token_id)
|
||||
next_batch_position_ids.append(input_length)
|
||||
# Cumulative sum
|
||||
next_batch_cu_seqlens.append(
|
||||
next_batch_cu_seqlens[-1] + new_input_length
|
||||
)
|
||||
next_batch_input_lengths.append(new_input_length)
|
||||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1:
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
prefill_logprobs = [float("nan")] + logprobs.gather(
|
||||
1, torch.tensor(all_input_ids[1:]).unsqueeze(1)
|
||||
).squeeze(1)[:-1].tolist()
|
||||
prefill_token_ids = all_input_ids[:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
prefill_tokens = PrefillTokens(
|
||||
prefill_token_ids, prefill_logprobs, prefill_texts
|
||||
)
|
||||
else:
|
||||
prefill_tokens = None
|
||||
|
||||
generation = Generation(
|
||||
request.id,
|
||||
prefill_tokens,
|
||||
next_token_id_item,
|
||||
next_token_logprob,
|
||||
next_token_text,
|
||||
next_token_id_item in self.all_special_ids,
|
||||
generated_text,
|
||||
)
|
||||
|
||||
generations.append(generation)
|
||||
cumulative_length += input_length
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generations, None
|
||||
|
||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||
# from the values of the next batch
|
||||
if len(next_batch_keep_indices) != len(batch):
|
||||
# Apply indices to requests, token_choosers and stopping_criterias that need to be cached
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Create final next batch tensors
|
||||
next_batch_position_ids = torch.tensor(
|
||||
next_batch_position_ids, dtype=torch.int32
|
||||
)
|
||||
next_batch_cu_seqlens = torch.tensor(next_batch_cu_seqlens, dtype=torch.int32)
|
||||
if len(next_batch_keep_indices) > 1:
|
||||
next_batch_input_ids = torch.concat(next_batch_input_ids)
|
||||
next_batch_past_key_values = torch.concat(next_batch_past_key_values, dim=1)
|
||||
else:
|
||||
next_batch_input_ids = next_batch_input_ids[0]
|
||||
next_batch_past_key_values = next_batch_past_key_values[0]
|
||||
|
||||
next_batch = FlashNeoXBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
input_ids=next_batch_input_ids,
|
||||
position_ids=next_batch_position_ids,
|
||||
cu_seqlens=next_batch_cu_seqlens,
|
||||
max_seqlen=next_batch_max_seqlen,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
)
|
||||
return generations, next_batch
|
||||
|
||||
|
||||
class FlashNeoXSharded(FlashNeoX):
|
||||
def __init__(
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashNeoX is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashNeoX does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id, revision=revision, tp_parallel=True
|
||||
)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
model = FlashGPTNeoXForCausalLM(config)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashNeoX, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
module_name, param_name = name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
current_parameter_tensor = parameters.get(name, None)
|
||||
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif name == "embed_out.weight" and model.gpt_neox.tp_embeddings:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(name)
|
||||
|
||||
if (
|
||||
current_parameter_tensor is not None
|
||||
and current_parameter_tensor.shape != tensor.shape
|
||||
):
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
module._parameters[param_name] = tensor
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
max_s: int,
|
||||
past_key_values: Optional = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if self.model.gpt_neox.tp_embeddings:
|
||||
logits, present = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_s=max_s,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
# Logits are sharded, so we need to gather them
|
||||
world_logits = [torch.empty_like(logits) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(world_logits, logits, group=self.process_group)
|
||||
world_logits = torch.cat(world_logits, dim=1)
|
||||
|
||||
return world_logits, present
|
||||
# While the model itself is sharded, the embeddings might not as they might not be dividable by num-shard
|
||||
else:
|
||||
return super(FlashNeoXSharded, self).forward(
|
||||
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
||||
)
|
|
@ -0,0 +1,637 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.models.gpt_neox import GPTNeoXConfig
|
||||
|
||||
# Flash attention imports
|
||||
import rotary_emb
|
||||
import flash_attn_cuda
|
||||
import dropout_layer_norm
|
||||
|
||||
from flash_attn.layers.rotary import RotaryEmbedding
|
||||
|
||||
|
||||
class TensorParallelColumnLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
assert out_features % self.tp_world_size == 0
|
||||
out_features = out_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def linear(input, weight, bias):
|
||||
return F.linear(input, weight, bias)
|
||||
|
||||
def forward(self, input):
|
||||
return self.linear(input, self.weight, self.bias)
|
||||
|
||||
|
||||
class TensorParallelRowLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
assert in_features % self.tp_world_size == 0
|
||||
in_features = in_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def linear(input, weight, bias):
|
||||
return F.linear(input, weight, bias)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
out = self.linear(input, self.weight, self.bias)
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TensorParallelEmbedding(nn.Embedding):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.0,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
_weight=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
|
||||
self.original_num_embeddings = num_embeddings
|
||||
|
||||
assert num_embeddings % self.tp_world_size == 0
|
||||
block_size = num_embeddings // self.tp_world_size
|
||||
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
||||
self.min_id = self.tp_rank * block_size
|
||||
self.max_id = (self.tp_rank + 1) * block_size
|
||||
|
||||
super().__init__(
|
||||
block_size,
|
||||
embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=_weight,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# Sanity check
|
||||
if torch.any(
|
||||
torch.logical_or(0 > input, input >= self.original_num_embeddings)
|
||||
):
|
||||
raise IndexError(
|
||||
f"Input is required to be in [0, {self.original_num_embeddings}[, got min: {torch.min(input)} and max: {torch.max(input)}"
|
||||
)
|
||||
|
||||
# `0` if input is in the correct interval, else `1`
|
||||
input_mask = torch.logical_or(self.min_id > input, input >= self.max_id)
|
||||
# translate for [0, self.max_id - self.min_id[
|
||||
input = input - self.min_id
|
||||
# default all out of bounds values to `0`
|
||||
input[input_mask] = 0
|
||||
out = super().forward(input)
|
||||
out[input_mask] = 0.0
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
||||
|
||||
|
||||
class PositionRotaryEmbedding(RotaryEmbedding):
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
# Reset the tables if the sequence length has changed,
|
||||
# or if we're on a new device (possibly due to tracing for instance)
|
||||
if (
|
||||
seqlen > self._seq_len_cached
|
||||
or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
):
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
# Don't do einsum, it converts fp32 to fp16
|
||||
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
|
||||
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
||||
"""
|
||||
Return cos and sin for the asked position ids
|
||||
"""
|
||||
|
||||
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
||||
|
||||
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
||||
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
||||
return cos.unsqueeze(1), sin.unsqueeze(1)
|
||||
|
||||
def forward(self, qkv: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
||||
rotary_dim = cos.shape[-1]
|
||||
q1 = qkv[:, 0, :, :rotary_dim]
|
||||
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
||||
k1 = qkv[:, 1, :, :rotary_dim]
|
||||
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
||||
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
||||
return qkv
|
||||
|
||||
|
||||
class FlashNeoxAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self, num_heads, hidden_size, rotary_pct, rotary_emb_base, process_group=None
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.head_size = hidden_size // num_heads
|
||||
|
||||
rotary_ndims = int(self.head_size * rotary_pct)
|
||||
self.rotary_emb = PositionRotaryEmbedding(rotary_ndims, base=rotary_emb_base)
|
||||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
|
||||
if process_group is None:
|
||||
self.query_key_value = nn.Linear(hidden_size, 3 * hidden_size)
|
||||
self.dense = nn.Linear(hidden_size, hidden_size)
|
||||
else:
|
||||
self.num_heads = self.num_heads // process_group.size()
|
||||
self.query_key_value = TensorParallelColumnLinear(
|
||||
hidden_size,
|
||||
3 * hidden_size,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.dense = TensorParallelRowLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.swap_dims = True
|
||||
|
||||
# TODO: remove and swap dims when loading weights
|
||||
def _swap_dims(self):
|
||||
"""Swap dims for the first inference to avoid an additional permute"""
|
||||
self.query_key_value.weight = torch.nn.Parameter(
|
||||
self.query_key_value.weight.view(
|
||||
self.num_heads, 3, self.head_size, self.hidden_size
|
||||
)
|
||||
.permute(1, 0, 2, 3)
|
||||
.reshape(-1, self.hidden_size)
|
||||
)
|
||||
self.query_key_value.bias = torch.nn.Parameter(
|
||||
self.query_key_value.bias.view(self.num_heads, 3, self.head_size)
|
||||
.permute(1, 0, 2)
|
||||
.reshape(-1)
|
||||
)
|
||||
self.swap_dims = False
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
if self.swap_dims:
|
||||
self._swap_dims()
|
||||
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
|
||||
qkv_rot = self.rotary_emb(qkv, cos, sin)
|
||||
|
||||
# Prefill
|
||||
if layer_past_present_indices is None:
|
||||
# Copy to layer past
|
||||
layer_past[...] = qkv_rot[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(qkv[:, 0])
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
qkv[:, 0],
|
||||
qkv[:, 1],
|
||||
qkv[:, 2],
|
||||
attn_output,
|
||||
cu_seqlens,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
True,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
query = qkv_rot[:, 0]
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[layer_past_present_indices] = qkv_rot[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
layer_past[:, 0],
|
||||
layer_past[:, 1],
|
||||
attn_output,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
|
||||
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
|
||||
class FlashMLP(nn.Module):
|
||||
def __init__(self, act, hidden_size, intermediate_size, process_group=None):
|
||||
super().__init__()
|
||||
self.act = (
|
||||
ACT2FN[act]
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
||||
)
|
||||
|
||||
if process_group is None:
|
||||
self.dense_h_to_4h = nn.Linear(hidden_size, intermediate_size)
|
||||
self.dense_4h_to_h = nn.Linear(intermediate_size, hidden_size)
|
||||
else:
|
||||
self.dense_h_to_4h = TensorParallelColumnLinear(
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.dense_4h_to_h = TensorParallelRowLinear(
|
||||
intermediate_size,
|
||||
hidden_size,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.heuristic = "auto"
|
||||
self.process_group = process_group
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense_h_to_4h(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.dense_4h_to_h(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashNeoXLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
act,
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
rotary_pct,
|
||||
rotary_emb_base,
|
||||
layer_norm_eps,
|
||||
use_parallel_residual,
|
||||
process_group=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.use_parallel_residual = use_parallel_residual
|
||||
self.input_layernorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
||||
self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
||||
self.attention = FlashNeoxAttention(
|
||||
num_heads, hidden_size, rotary_pct, rotary_emb_base, process_group
|
||||
)
|
||||
self.mlp = FlashMLP(act, hidden_size, intermediate_size, process_group)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
if self.use_parallel_residual:
|
||||
# faster input layer norm
|
||||
ln1_hidden_states, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
None,
|
||||
self.input_layernorm.weight,
|
||||
self.input_layernorm.bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.input_layernorm.eps,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
|
||||
attn_output = self.attention(
|
||||
ln1_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
)
|
||||
|
||||
# faster post attention layer norm
|
||||
ln2_hidden_states, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
None,
|
||||
self.post_attention_layernorm.weight,
|
||||
self.post_attention_layernorm.bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.post_attention_layernorm.eps,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
|
||||
mlp_output = self.mlp(ln2_hidden_states)
|
||||
return mlp_output + attn_output + hidden_states, None
|
||||
else:
|
||||
# faster input layer norm
|
||||
hidden_states, residual, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.input_layernorm.weight,
|
||||
self.input_layernorm.bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.input_layernorm.eps,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
|
||||
hidden_states = self.attention(
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
)
|
||||
|
||||
# faster post attention layer norm
|
||||
hidden_states, residual, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.post_attention_layernorm.weight,
|
||||
self.post_attention_layernorm.bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.post_attention_layernorm.eps,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
|
||||
mlp_output = self.mlp(hidden_states)
|
||||
|
||||
return mlp_output, residual
|
||||
|
||||
|
||||
class FlashGPTNeoXPreTrainedModel(PreTrainedModel):
|
||||
config_class = GPTNeoXConfig
|
||||
base_model_prefix = "gpt_neox"
|
||||
supports_gradient_checkpointing = False
|
||||
_no_split_modules = None
|
||||
|
||||
|
||||
class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
||||
def __init__(self, config, process_group=None):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.tp_embeddings = False
|
||||
if process_group is not None:
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
if config.vocab_size % self.tp_world_size == 0:
|
||||
self.tp_embeddings = True
|
||||
|
||||
if self.tp_embeddings:
|
||||
self.embed_in = TensorParallelEmbedding(
|
||||
config.vocab_size, config.hidden_size, process_group=process_group
|
||||
)
|
||||
else:
|
||||
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
FlashNeoXLayer(
|
||||
config.num_attention_heads,
|
||||
config.hidden_act,
|
||||
config.hidden_size,
|
||||
config.intermediate_size,
|
||||
config.rotary_pct,
|
||||
config.rotary_emb_base,
|
||||
config.layer_norm_eps,
|
||||
config.use_parallel_residual,
|
||||
process_group,
|
||||
)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.final_layer_norm = nn.LayerNorm(
|
||||
config.hidden_size, eps=config.layer_norm_eps
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.head_size = self.layers[0].attention.head_size
|
||||
self.num_heads = self.layers[0].attention.num_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states = self.embed_in(input_ids)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
# Create past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(self.layers),
|
||||
len(hidden_states),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
layer_past_present_indices = None
|
||||
cu_seqlens_q = None
|
||||
# Decode
|
||||
else:
|
||||
# Create indices from cumulative sequence lengths
|
||||
layer_past_present_indices = cu_seqlens[1:] - 1
|
||||
cu_seqlens_q = torch.arange(
|
||||
len(cu_seqlens), dtype=torch.int32, device=hidden_states.device
|
||||
)
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values[i],
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
)
|
||||
|
||||
# Faster final layer norm
|
||||
hidden_states, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.final_layer_norm.weight,
|
||||
self.final_layer_norm.bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.final_layer_norm.eps,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
|
||||
|
||||
class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
if config.tp_parallel:
|
||||
process_group = torch.distributed.distributed_c10d._get_default_group()
|
||||
else:
|
||||
process_group = None
|
||||
|
||||
self.gpt_neox = FlashGPTNeoXModel(config, process_group)
|
||||
|
||||
if self.gpt_neox.tp_embeddings:
|
||||
self.embed_out = nn.Linear(
|
||||
config.hidden_size,
|
||||
config.vocab_size // process_group.size(),
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
self.embed_out = nn.Linear(
|
||||
config.hidden_size, config.vocab_size, bias=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states, present = self.gpt_neox(
|
||||
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
||||
)
|
||||
return self.embed_out(hidden_states), present
|
|
@ -24,7 +24,7 @@ class Sampling:
|
|||
self.seed = seed
|
||||
|
||||
def __call__(self, logits):
|
||||
probs = torch.nn.functional.softmax(logits)
|
||||
probs = torch.nn.functional.softmax(logits, -1)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1, generator=self.generator)
|
||||
return next_tokens
|
||||
|
||||
|
|
|
@ -17,6 +17,7 @@ import os
|
|||
|
||||
import torch
|
||||
from transformers import LogitsProcessor
|
||||
from typing import List, Union
|
||||
|
||||
GAMMA = os.getenv("WATERMARK_GAMMA", 0.5)
|
||||
DELTA = os.getenv("WATERMARK_DELTA", 2.0)
|
||||
|
@ -36,23 +37,32 @@ class WatermarkLogitsProcessor(LogitsProcessor):
|
|||
self.rng = torch.Generator(device=device)
|
||||
self.hash_key = hash_key
|
||||
|
||||
def _seed_rng(self, input_ids: torch.LongTensor) -> None:
|
||||
assert (
|
||||
input_ids.shape[-1] >= 1
|
||||
), "requires at least a 1 token prefix sequence to seed rng"
|
||||
prev_token = input_ids[-1].item()
|
||||
def _seed_rng(self, input_ids: Union[List[int], torch.LongTensor]):
|
||||
if isinstance(input_ids, list):
|
||||
assert (
|
||||
len(input_ids) >= 1
|
||||
), "requires at least a 1 token prefix sequence to seed rng"
|
||||
prev_token = input_ids[-1]
|
||||
else:
|
||||
input_ids = input_ids[0]
|
||||
assert len(input_ids) == 1
|
||||
assert (
|
||||
input_ids.shape[-1] >= 1
|
||||
), "requires at least a 1 token prefix sequence to seed rng"
|
||||
prev_token = input_ids[-1].item()
|
||||
self.rng.manual_seed(self.hash_key * prev_token)
|
||||
|
||||
def _get_greenlist_ids(
|
||||
self, input_ids: torch.LongTensor, max_value: int
|
||||
) -> list[int]:
|
||||
self,
|
||||
input_ids: Union[List[int], torch.LongTensor],
|
||||
max_value: int,
|
||||
device: torch.device,
|
||||
) -> List[int]:
|
||||
# seed the rng using the previous tokens/prefix
|
||||
self._seed_rng(input_ids)
|
||||
|
||||
greenlist_size = int(max_value * self.gamma)
|
||||
vocab_permutation = torch.randperm(
|
||||
max_value, device=input_ids.device, generator=self.rng
|
||||
)
|
||||
vocab_permutation = torch.randperm(max_value, device=device, generator=self.rng)
|
||||
greenlist_ids = vocab_permutation[:greenlist_size]
|
||||
return greenlist_ids
|
||||
|
||||
|
@ -73,10 +83,11 @@ class WatermarkLogitsProcessor(LogitsProcessor):
|
|||
return scores
|
||||
|
||||
def __call__(
|
||||
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
|
||||
self, input_ids: Union[List[int], torch.LongTensor], scores: torch.FloatTensor
|
||||
) -> torch.FloatTensor:
|
||||
assert len(input_ids) == 1
|
||||
greenlist_ids = self._get_greenlist_ids(input_ids[0], scores.shape[-1])
|
||||
greenlist_ids = self._get_greenlist_ids(
|
||||
input_ids, scores.shape[-1], scores.device
|
||||
)
|
||||
green_tokens_mask = self._calc_greenlist_mask(
|
||||
scores=scores, greenlist_token_ids=greenlist_ids
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue