Prepare patch release. (#2829)
This commit is contained in:
parent
cc66dccbe8
commit
07b01293c5
|
@ -20,7 +20,7 @@ default-members = [
|
|||
resolver = "2"
|
||||
|
||||
[workspace.package]
|
||||
version = "3.0.1-dev0"
|
||||
version = "3.0.2-dev0"
|
||||
edition = "2021"
|
||||
authors = ["Olivier Dehaene"]
|
||||
homepage = "https://github.com/huggingface/text-generation-inference"
|
||||
|
|
|
@ -19,6 +19,6 @@ docker run --gpus all \
|
|||
--shm-size 1g \
|
||||
-e HF_TOKEN=$token \
|
||||
-p 8080:80 \
|
||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0 \
|
||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 \
|
||||
--model-id $model
|
||||
```
|
||||
|
|
|
@ -19,7 +19,7 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
|
|||
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model --quantize bitsandbytes
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 --model-id $model --quantize bitsandbytes
|
||||
```
|
||||
|
||||
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
|
||||
|
@ -27,7 +27,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
|
|||
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model --quantize bitsandbytes-nf4
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 --model-id $model --quantize bitsandbytes-nf4
|
||||
```
|
||||
|
||||
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
||||
|
@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
|
|||
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.0 --model-id $model --quantize gptq
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:3.0.1 --model-id $model --quantize gptq
|
||||
```
|
||||
|
||||
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
|
||||
|
|
|
@ -11,7 +11,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||
docker run --rm -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
|
||||
--device=/dev/kfd --device=/dev/dri --group-add video \
|
||||
--ipc=host --shm-size 256g --net host -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.0-rocm \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.1-rocm \
|
||||
--model-id $model
|
||||
```
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||
docker run --rm --privileged --cap-add=sys_nice \
|
||||
--device=/dev/dri \
|
||||
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.0-intel-xpu \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.1-intel-xpu \
|
||||
--model-id $model --cuda-graphs 0
|
||||
```
|
||||
|
||||
|
@ -29,7 +29,7 @@ volume=$PWD/data # share a volume with the Docker container to avoid downloading
|
|||
docker run --rm --privileged --cap-add=sys_nice \
|
||||
--device=/dev/dri \
|
||||
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.0-intel-cpu \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.1-intel-cpu \
|
||||
--model-id $model --cuda-graphs 0
|
||||
```
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
|
|||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all --shm-size 64g -p 8080:80 -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.0 \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.1 \
|
||||
--model-id $model
|
||||
```
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@ model=teknium/OpenHermes-2.5-Mistral-7B
|
|||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.0 \
|
||||
ghcr.io/huggingface/text-generation-inference:3.0.1 \
|
||||
--model-id $model
|
||||
```
|
||||
|
||||
|
@ -96,7 +96,7 @@ curl 127.0.0.1:8080/generate \
|
|||
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
|
||||
|
||||
```bash
|
||||
docker run ghcr.io/huggingface/text-generation-inference:3.0.0 --help
|
||||
docker run ghcr.io/huggingface/text-generation-inference:3.0.1 --help
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
|
|
@ -163,7 +163,7 @@ hub = {
|
|||
|
||||
# create Hugging Face Model Class
|
||||
huggingface_model = HuggingFaceModel(
|
||||
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.0.0"),
|
||||
image_uri=get_huggingface_llm_image_uri("huggingface",version="3.0.1"),
|
||||
env=hub,
|
||||
role=role,
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue