feat: experimental support for cuda graphs (#1428)

Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com>
This commit is contained in:
OlivierDehaene 2024-02-12 10:09:29 +01:00 committed by GitHub
parent 532146338b
commit 0d794af6a5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 300 additions and 58 deletions

View File

@ -1,5 +1,5 @@
# Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.71 AS chef
FROM lukemathwalker/cargo-chef:latest-rust-1.75 AS chef
WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
@ -166,7 +166,7 @@ FROM kernel-builder as megablocks-builder
RUN pip install git+https://github.com/OlivierDehaene/megablocks@181709df192de9a941fdf3a641cdc65a0462996e
# Text Generation Inference base image
FROM nvidia/cuda:12.1.0-base-ubuntu20.04 as base
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 as base
# Conda env
ENV PATH=/opt/conda/bin:$PATH \

View File

@ -1,5 +1,5 @@
# Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.71 AS chef
FROM lukemathwalker/cargo-chef:latest-rust-1.75 AS chef
WORKDIR /usr/src
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse

View File

@ -205,6 +205,14 @@ Options:
[env: MAX_BATCH_SIZE=]
```
## ENABLE_CUDA_GRAPHS
```shell
--enable-cuda-graphs
Enable experimental support for cuda graphs
[env: ENABLE_CUDA_GRAPHS=]
```
## HOSTNAME
```shell

View File

@ -317,7 +317,10 @@ def launcher(event_loop):
gpu_count = num_shard if num_shard is not None else 1
env = {"LOG_LEVEL": "info,text_generation_router=debug"}
env = {
"LOG_LEVEL": "info,text_generation_router=debug",
"ENABLE_CUDA_GRAPHS": "true",
}
if not use_flash_attention:
env["USE_FLASH_ATTENTION"] = "false"

View File

@ -284,6 +284,10 @@ struct Args {
#[clap(long, env)]
max_batch_size: Option<usize>,
/// Enable experimental support for cuda graphs
#[clap(long, env)]
enable_cuda_graphs: bool,
/// The IP address to listen on
#[clap(default_value = "0.0.0.0", long, env)]
hostname: String,
@ -407,6 +411,7 @@ fn shard_manager(
disable_custom_kernels: bool,
watermark_gamma: Option<f32>,
watermark_delta: Option<f32>,
enable_cuda_graphs: bool,
cuda_memory_fraction: f32,
rope_scaling: Option<RopeScaling>,
rope_factor: Option<f32>,
@ -488,7 +493,7 @@ fn shard_manager(
envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
envs.push(("MASTER_ADDR".into(), master_addr.into()));
envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
envs.push(("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()));
envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
// CUDA memory fraction
envs.push((
@ -538,6 +543,11 @@ fn shard_manager(
));
};
// Enable experimental support for cuda graphs
if enable_cuda_graphs {
envs.push(("ENABLE_CUDA_GRAPHS".into(), "True".into()))
}
// If disable_custom_kernels is true, pass it to the shard as an env var
if disable_custom_kernels {
envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
@ -926,6 +936,7 @@ fn spawn_shards(
let disable_custom_kernels = args.disable_custom_kernels;
let watermark_gamma = args.watermark_gamma;
let watermark_delta = args.watermark_delta;
let enable_cuda_graphs = args.enable_cuda_graphs;
let cuda_memory_fraction = args.cuda_memory_fraction;
let rope_scaling = args.rope_scaling;
let rope_factor = args.rope_factor;
@ -947,6 +958,7 @@ fn spawn_shards(
disable_custom_kernels,
watermark_gamma,
watermark_delta,
enable_cuda_graphs,
cuda_memory_fraction,
rope_scaling,
rope_factor,

View File

@ -1,8 +1,10 @@
awq_commit := f084f40bd996f3cf3a0633c1ad7d9d476c318aaa
# Fork that adds only the correct stream to this kernel in order
# to make cuda graphs work.
awq_commit := bd1dc2d5254345cc76ab71894651fb821275bdd4
awq:
rm -rf llm-awq
git clone https://github.com/mit-han-lab/llm-awq
git clone https://github.com/huggingface/llm-awq
build-awq: awq
cd llm-awq/ && git fetch && git checkout $(awq_commit)

View File

@ -1,5 +1,6 @@
#include "q4_matmul.cuh"
#include "column_remap.cuh"
#include <ATen/cuda/CUDAContext.h>
#include "../util.cuh"
#include "../matrix.cuh"
#include "../cu_compat.cuh"
@ -224,8 +225,8 @@ void q4_matmul_recons_cuda
const int x_height,
Q4Matrix* w,
half* out,
const cublasHandle_t handle,
bool no_zero
bool no_zero,
const cublasHandle_t handle
)
{
int height = x_height;

View File

@ -19,8 +19,8 @@ void q4_matmul_cuda
const int x_height,
const Q4Matrix* w,
half* out,
bool no_zero = false,
cudaStream_t alt_stream = NULL
bool no_zero,
cudaStream_t alt_stream
);
void q4_matmul_recons_cuda
@ -30,8 +30,8 @@ void q4_matmul_recons_cuda
const int x_height,
Q4Matrix* w,
half* out,
const cublasHandle_t handle,
bool no_zero = false
bool no_zero,
const cublasHandle_t handle
);
#endif

View File

@ -1,5 +1,6 @@
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
#include <ATen/cuda/CUDAContext.h>
#include "q4_matrix.cuh"
#include <vector>
#include "../util.cuh"
@ -90,7 +91,7 @@ __global__ void make_sequential_kernel
int w2_row_shift = w2_subrow << 2;
int wnew2_row_shift = i << 2;
uint64_t src = w2[w2_row * w2_stride + w2_column];
uint64_t src = w2[w2_row * w2_stride + w2_column];
src >>= w2_row_shift;
src &= 0x0000000f0000000f;
src <<= wnew2_row_shift;
@ -146,7 +147,8 @@ void Q4Matrix::make_sequential(const uint32_t* cpu_g_idx)
dim3 threads(UNSHUF_BLOCKSIZE_X, 1, 1);
dim3 blocks(width / UNSHUF_BLOCKSIZE_X / 2, height / 8, 1);
make_sequential_kernel<<<blocks, threads>>>(cuda_qweight, cuda_new_qweight, cuda_x_map, height / 8, width);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
make_sequential_kernel<<<blocks, threads, 0, stream>>>(cuda_qweight, cuda_new_qweight, cuda_x_map, height / 8, width);
// Replace qweights
@ -213,5 +215,6 @@ void Q4Matrix::reconstruct(half* out)
1
);
reconstruct_kernel<<<blocks, threads>>>(cuda_qweight, out, cuda_scales, cuda_qzeros, height / 8, width, groupsize);
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
reconstruct_kernel<<<blocks, threads, 0, stream>>>(cuda_qweight, out, cuda_scales, cuda_qzeros, height / 8, width, groupsize);
}

View File

@ -183,6 +183,7 @@ void q4_matmul
int x_height = x.size(0);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (tuningParams.matmul_recons_thd == 0 || x_height < tuningParams.matmul_recons_thd)
{
q4_matmul_cuda
@ -191,7 +192,9 @@ void q4_matmul
(half*) x.data_ptr(),
x_height,
wm,
(half*) out.data_ptr()
(half*) out.data_ptr(),
false,
stream
);
}
else
@ -203,6 +206,7 @@ void q4_matmul
x_height,
wm,
(half*) out.data_ptr(),
false,
at::cuda::getCurrentCUDABlasHandle()
);
}

View File

@ -38,6 +38,7 @@ void gemm_half_q_half_cuda_part
bool mul_r_weights
)
{
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (!b->is_gptq)
{
dim3 blockDim, gridDim;
@ -50,7 +51,7 @@ void gemm_half_q_half_cuda_part
fp_gemm_half_q_half_kernel kernel = pick_gemm_half_q_half_kernel(m_count, r_weights != NULL, mul_r_weights);
kernel<<<gridDim, blockDim>>>
kernel<<<gridDim, blockDim, 0, stream>>>
(
a,
b->cuda_q_weight,
@ -91,7 +92,7 @@ void gemm_half_q_half_cuda_part
// print_global_mem(r_weights, 1, 1, 1);
// DBGI(r_weights_stride);
kernel<<<gridDim, blockDim>>>
kernel<<<gridDim, blockDim, 0, stream>>>
(
a,
b->cuda_q_weight,

View File

@ -168,8 +168,9 @@ QMatrix::QMatrix
blockDim.y = 1;
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = 1;
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
shuffle_kernel<<<gridDim, blockDim>>>(cuda_q_weight, height, width, rows_8, rows_6, rows_5, rows_4, rows_3, rows_2);
shuffle_kernel<<<gridDim, blockDim, 0, stream>>>(cuda_q_weight, height, width, rows_8, rows_6, rows_5, rows_4, rows_3, rows_2);
}
QMatrix::~QMatrix()
@ -475,11 +476,12 @@ void QMatrix::reconstruct(half* out)
blockDim.x = BLOCK_KN_SIZE;
blockDim.y = 1;
gridDim.y = DIVIDE(height, BLOCK_KN_SIZE);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (!is_gptq)
{
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
reconstruct_kernel<<<gridDim, blockDim>>>
reconstruct_kernel<<<gridDim, blockDim, 0, stream>>>
(
cuda_q_weight,
cuda_q_perm,
@ -502,7 +504,7 @@ void QMatrix::reconstruct(half* out)
else
{
gridDim.x = DIVIDE(width, BLOCK_KN_SIZE * 4);
reconstruct_gptq_kernel<<<gridDim, blockDim>>>
reconstruct_gptq_kernel<<<gridDim, blockDim, 0, stream>>>
(
cuda_q_weight,
cuda_q_perm,
@ -563,6 +565,7 @@ __global__ void make_sequential_kernel
bool QMatrix::make_sequential(const uint32_t* cpu_g_idx)
{
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
uint32_t* cuda_new_qweight = NULL;
cudaError_t err = cudaMalloc(&cuda_new_qweight, height / 8 * width * sizeof(uint32_t));
if (err != cudaSuccess) {
@ -621,7 +624,7 @@ bool QMatrix::make_sequential(const uint32_t* cpu_g_idx)
gridDim.x = DIVIDE(width, THREADS_X);
gridDim.y = height / 8;
make_sequential_kernel<<<gridDim, blockDim>>>
make_sequential_kernel<<<gridDim, blockDim, 0, stream>>>
(
cuda_q_weight,
cuda_new_qweight,

View File

@ -425,6 +425,11 @@ class FlashMistralForCausalLM(torch.nn.Module):
weights=weights,
)
self.max_past = config.sliding_window
self.max_past_tensor = (
torch.tensor(config.sliding_window, device=weights.device)
if self.max_past is not None
else None
)
def forward(
self,
@ -446,8 +451,7 @@ class FlashMistralForCausalLM(torch.nn.Module):
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
max_s = min(self.max_past, max_s)
input_lengths = torch.clamp(input_lengths, max=self.max_past)
input_lengths = torch.clamp(input_lengths, max=self.max_past_tensor)
hidden_states = self.model(
input_ids,

View File

@ -816,6 +816,11 @@ class FlashMixtralForCausalLM(torch.nn.Module):
weights=weights,
)
self.max_past = config.sliding_window
self.max_past_tensor = (
torch.tensor(config.sliding_window, device=weights.device)
if self.max_past is not None
else None
)
def forward(
self,
@ -837,8 +842,7 @@ class FlashMixtralForCausalLM(torch.nn.Module):
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
max_s = min(self.max_past, max_s)
input_lengths = torch.clamp(input_lengths, max=self.max_past)
input_lengths = torch.clamp(input_lengths, max=self.max_past_tensor)
hidden_states = self.model(
input_ids,

View File

@ -1,4 +1,5 @@
import math
import os
import time
import itertools
import torch
@ -6,6 +7,7 @@ import torch.distributed
import numpy as np
from loguru import logger
from dataclasses import dataclass
from opentelemetry import trace
from transformers import PreTrainedTokenizerBase
@ -31,6 +33,8 @@ from text_generation_server.utils.dist import MEMORY_FRACTION
tracer = trace.get_tracer(__name__)
MEM_POOL = torch.cuda.graph_pool_handle()
@dataclass
class FlashCausalLMBatch(Batch):
@ -62,7 +66,7 @@ class FlashCausalLMBatch(Batch):
# Set in prefill by the CacheManager
# list of length b of list of length s_i // block_size
block_tables: Optional[List[List[int]]]
# tensor of size [b, max_seqlen // block_size] holding the paged attention block tables for all sequences
# tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences
block_tables_tensor: Optional[torch.Tensor]
# tensor of length \sum_{i=0}^{b} max_s_i holding the paged attention slots for all sequences
slots: Optional[torch.Tensor]
@ -663,6 +667,8 @@ class FlashCausalLM(Model):
self.num_kv_heads = num_kv_heads
self.head_size = head_size
self.cuda_graphs = {}
super(FlashCausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
@ -678,7 +684,60 @@ class FlashCausalLM(Model):
def batch_type(self) -> Type[FlashCausalLMBatch]:
return FlashCausalLMBatch
def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
slots = torch.arange(bs, dtype=torch.int32, device=self.device)
input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
block_tables = (
torch.arange(max_bt, dtype=torch.int32, device=self.device)
.repeat(bs)
.reshape((bs, max_bt))
)
kv_cache = get_cache_manager().kv_cache
self.cuda_graphs[bs] = {
"input_ids": input_ids,
"position_ids": position_ids,
"kv_cache": kv_cache,
"block_tables": block_tables,
"slots": slots,
"input_lengths": input_lengths,
}
graph = torch.cuda.CUDAGraph()
self.cuda_graphs[bs]["graph"] = graph
torch.cuda.synchronize()
# Run once outside to warmup
self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
lm_head_indices=None,
)
torch.cuda.synchronize()
with torch.cuda.graph(graph, pool=MEM_POOL):
self.cuda_graphs[bs]["logits"] = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
lm_head_indices=None,
)
torch.cuda.synchronize()
def warmup(self, batch: FlashCausalLMBatch):
# The warmup batch is the biggest batch we could ever receive
torch.cuda.empty_cache()
try:
cache_manager = set_cache_manager(
@ -690,6 +749,8 @@ class FlashCausalLM(Model):
self.dtype,
self.device,
)
max_bt = batch.max_blocks
max_s = max_bt * get_cache_manager().block_size
_, batch, _ = self.generate_token(batch)
except torch.cuda.OutOfMemoryError as e:
raise RuntimeError(
@ -713,7 +774,8 @@ class FlashCausalLM(Model):
)
num_blocks = (
int(free_memory // total_cache_size)
# Leave 5% for some wiggle room
int((free_memory * 0.95) // total_cache_size)
# Add batch.blocks as we allocated it above, so it is included in the peak memory.
+ cache_manager.num_blocks
)
@ -731,9 +793,19 @@ class FlashCausalLM(Model):
self.device,
)
if os.getenv("ENABLE_CUDA_GRAPHS", "False") == "True":
try:
logger.info("Experimental support for Cuda Graphs is enabled")
# Warmup cuda graphs
for bs in [1, 2, 4] + [8 * i for i in range(8)]:
if self.speculate is None or self.speculate + 1 <= bs:
self.cuda_graph_warmup(bs, max_s, max_bt)
except Exception:
logger.exception(f"Decode cuda graph warmup failed")
return int(num_blocks * BLOCK_SIZE)
def forward(self, batch: FlashCausalLMBatch) -> Tuple[torch.Tensor, torch.Tensor]:
def forward(self, batch: FlashCausalLMBatch) -> torch.Tensor:
# Model Forward
if batch.speculative_ids is not None:
input_ids = batch.input_ids
@ -785,17 +857,48 @@ class FlashCausalLM(Model):
max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices
return self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
lm_head_indices=lm_head_indices,
)
bs = input_ids.shape[0]
padded_bs = bs
if bs == 3:
padded_bs = 4
elif 3 < bs <= 8:
padded_bs = 8
elif bs > 8:
padded_bs = (bs + 7) // 8 * 8
# Try to find an associated cuda graph
cuda_graph = self.cuda_graphs.get(padded_bs, None)
if cu_seqlen_prefill is not None or cuda_graph is None or batch.speculative_ids is not None:
return self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
lm_head_indices=lm_head_indices,
)
# Copy inputs to the static inputs of the cuda graph
# Static inputs are potentially padded
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
cuda_graph["block_tables"][
: block_tables.shape[0], : block_tables.shape[1]
] = block_tables
cuda_graph["slots"].fill_(-1)
cuda_graph["slots"][: slots.shape[0]] = slots
cuda_graph["input_lengths"].zero_()
cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
# Replay the graph
cuda_graph["graph"].replay()
# Slice output to the correct shape
return cuda_graph["logits"][:bs]
@tracer.start_as_current_span("generate_token")
def generate_token(

View File

@ -35,6 +35,8 @@ tracer = trace.get_tracer(__name__)
SLIDING_WINDOW: Optional[int] = None
SLIDING_WINDOW_BLOCKS: Optional[int] = None
MEM_POOL = torch.cuda.graph_pool_handle()
# Adds windowing logic to FlashCausalLMBatch
@dataclass
@ -332,6 +334,8 @@ class BaseFlashMistral(FlashCausalLM):
model = model_cls(config, weights)
self.cuda_graphs = {}
torch.distributed.barrier(group=self.process_group)
super(BaseFlashMistral, self).__init__(
model=model,
@ -350,6 +354,60 @@ class BaseFlashMistral(FlashCausalLM):
def batch_type(self) -> Type[FlashMistralBatch]:
return FlashMistralBatch
def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
slots = torch.arange(bs, dtype=torch.int32, device=self.device)
input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
block_tables = (
torch.arange(max_bt, dtype=torch.int32, device=self.device)
.repeat(bs)
.reshape((bs, max_bt))
)
kv_cache = get_cache_manager().kv_cache
self.cuda_graphs[bs] = {
"input_ids": input_ids,
"position_ids": position_ids,
"kv_cache": kv_cache,
"block_tables": block_tables,
"slots": slots,
"input_lengths": input_lengths,
}
graph = torch.cuda.CUDAGraph()
self.cuda_graphs[bs]["graph"] = graph
torch.cuda.synchronize()
# Run once outside to warmup
self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
prefill_cache_indices=None,
lm_head_indices=None,
)
torch.cuda.synchronize()
with torch.cuda.graph(graph, pool=MEM_POOL):
self.cuda_graphs[bs]["logits"] = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=None,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
prefill_cache_indices=None,
lm_head_indices=None,
)
torch.cuda.synchronize()
def forward(self, batch: FlashMistralBatch) -> Tuple[torch.Tensor, torch.Tensor]:
# Model Forward
if batch.speculative_ids is not None:
@ -401,21 +459,56 @@ class BaseFlashMistral(FlashCausalLM):
input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices
logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices,
)
if batch.prefill_cache_indices is not None:
batch.prefill_cache_indices = None
return logits
if self.model.max_past is not None:
max_s = min(self.model.max_past, max_s)
bs = input_ids.shape[0]
padded_bs = bs
if bs == 3:
padded_bs = 4
elif 3 < bs <= 8:
padded_bs = 8
elif bs > 8:
padded_bs = (bs + 7) // 8 * 8
# Try to find an associated cuda graph
cuda_graph = self.cuda_graphs.get(padded_bs, None)
if cu_seqlen_prefill is not None or cuda_graph is None:
logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices,
)
if batch.prefill_cache_indices is not None:
batch.prefill_cache_indices = None
return logits
# Copy inputs to the static inputs of the cuda graph
# Static inputs are potentially padded
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
cuda_graph["block_tables"][
: block_tables.shape[0], : block_tables.shape[1]
] = block_tables
cuda_graph["slots"].fill_(-1)
cuda_graph["slots"][: slots.shape[0]] = slots
cuda_graph["input_lengths"].zero_()
cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
# Replay the graph
cuda_graph["graph"].replay()
# Slice output to the correct shape
return cuda_graph["logits"][:bs]
class FlashMistral(BaseFlashMistral):

View File

@ -407,8 +407,9 @@ class Weights:
data = json.load(f)
self.gptq_bits = data["quantization_config"]["bits"]
self.gptq_groupsize = data["quantization_config"]["group_size"]
self.gptq_desc_act = data["quantization_config"]["desc_act"]
# Order is important here, desc_act is missing on some real models
self.quant_method = data["quantization_config"]["quant_method"]
self.gptq_desc_act = data["quantization_config"]["desc_act"]
except Exception:
filename = "quantize_config.json"
try: