feat: supports openai chat completions API (#1427)

This PR adds support to make TGI a drop in replacement for OpenAI
clients by exposing the same HTTP interface.

Notes
- TGI inits a single model at startup so the `model` field is unused in
HTTP requests.
- `max_tokens` and `stream` should work as expected but other params may
be (unimplemented or not supported)

General approach
- fetch the `tokenizer_config` at startup from the hub
- pass `tokenizer_config` into `Infer` so we have it at request time
- use the `chat_template` on the config to format chat request
- parse jinja template and render chat string
- pass inputs into existing generate function
- wrap generation output in expected structure before returning

# How to test

### Streaming curl
```bash
curl localhost:3000/v1/chat/completions \
    -X POST \
    -d '{
  "model": "tgi",
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful assistant."
    },
    {
      "role": "user",
      "content": "What is deep learning?"
    }
  ],
  "stream": true,
  "max_tokens": 20
}' \
    -H 'Content-Type: application/json'
```


It is also possible to use the `openai` python library and change the
base url

###  🌊 STREAMING REQUEST
```python
from openai import OpenAI

# init the client but point it to TGI
client = OpenAI(
    base_url="http://localhost:3000/v1",
    api_key="not needed for a local LLM"
)

chat_completion = client.chat.completions.create(
    model="tgi",
    messages=[
        {"role": "system", "content": "You are a helpful assistant." },
        {"role": "user", "content": "What is deep learning?"}
    ],
    stream=True
)

# iterate and print stream
for message in chat_completion:
    print(message)

# ChatCompletionChunk(id='', choices=[Choice(delta=ChoiceDelta(content=' that', function_call=None, role='assistant', tool_calls=None), finish_reason=None, index=2, logprobs=None)], created=1704486761, model='', object='text_completion', system_fingerprint='')
```

### 🚗 SYNCHRONOUS REQUEST
```python
from openai import OpenAI

# init the client but point it to TGI
client = OpenAI(
    base_url="http://localhost:3000/v1",
    api_key="not needed for a local LLM"
)

chat_completion = client.chat.completions.create(
    model="tgi",
    messages=[
        {"role": "system", "content": "You are a helpful assistant." },
        {"role": "user", "content": "What is deep learning?"}
    ],
    stream=False
)

print(chat_completion)
# ChatCompletion(id='', choices=[Choice(finish_reason=None, index=0, logprobs=None, message=ChatCompletionMessage(content='\nDeep learning is a new field of research that has been gaining traction in the last ...', role='assistant', function_call=None, tool_calls=None))], created=1704486762, model='', object='text_completion', system_fingerprint='', usage=CompletionUsage(completion_tokens=100, prompt_tokens=76, total_tokens=176))
```


## How to run dev

```bash
cd text-generation-inference/server
MASTER_ADDR=127.0.0.1 MASTER_PORT=5555 text-generation-server serve --trust-remote-code gpt2
```

***note many of the existing `chat_templates` use non standard `jinja`
(ie. adding a `raise` to the template) which will throw an error when
parsing; hence using `upstage/SOLAR-10.7B-Instruct-v1.0` since it has a
valid template
```bash
cd text-generation-inference/router
cargo run -- --tokenizer-name upstage/SOLAR-10.7B-Instruct-v1.0
```

trigger
```bash
curl localhost:3000/v1/chat/completions \
    -X POST \
    -d '{ "model": "gpt-3.5-turbo", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the IP address of the Google DNS servers?" } ], "stream": true, "max_tokens": 20, "logprobs": true }' \
    -H 'Content-Type: application/json'
```

^ supports `stream: true` and `stream: false` requests
This commit is contained in:
drbh 2024-01-16 05:07:41 -05:00 committed by GitHub
parent ac08b4ef9c
commit 0eabc83541
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 558 additions and 65 deletions

39
Cargo.lock generated
View File

@ -773,9 +773,9 @@ dependencies = [
[[package]]
name = "futures-channel"
version = "0.3.29"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ff4dd66668b557604244583e3e1e1eada8c5c2e96a6d0d6653ede395b78bbacb"
checksum = "eac8f7d7865dcb88bd4373ab671c8cf4508703796caa2b1985a9ca867b3fcb78"
dependencies = [
"futures-core",
"futures-sink",
@ -783,9 +783,9 @@ dependencies = [
[[package]]
name = "futures-core"
version = "0.3.29"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eb1d22c66e66d9d72e1758f0bd7d4fd0bee04cad842ee34587d68c07e45d088c"
checksum = "dfc6580bb841c5a68e9ef15c77ccc837b40a7504914d52e47b8b0e9bbda25a1d"
[[package]]
name = "futures-executor"
@ -800,15 +800,15 @@ dependencies = [
[[package]]
name = "futures-io"
version = "0.3.29"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8bf34a163b5c4c52d0478a4d757da8fb65cabef42ba90515efee0f6f9fa45aaa"
checksum = "a44623e20b9681a318efdd71c299b6b222ed6f231972bfe2f224ebad6311f0c1"
[[package]]
name = "futures-macro"
version = "0.3.29"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53b153fd91e4b0147f4aced87be237c98248656bb01050b96bf3ee89220a8ddb"
checksum = "87750cf4b7a4c0625b1529e4c543c2182106e4dedc60a2a6455e00d212c489ac"
dependencies = [
"proc-macro2",
"quote",
@ -817,21 +817,21 @@ dependencies = [
[[package]]
name = "futures-sink"
version = "0.3.29"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e36d3378ee38c2a36ad710c5d30c2911d752cb941c00c72dbabfb786a7970817"
checksum = "9fb8e00e87438d937621c1c6269e53f536c14d3fbd6a042bb24879e57d474fb5"
[[package]]
name = "futures-task"
version = "0.3.29"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "efd193069b0ddadc69c46389b740bbccdd97203899b48d09c5f7969591d6bae2"
checksum = "38d84fa142264698cdce1a9f9172cf383a0c82de1bddcf3092901442c4097004"
[[package]]
name = "futures-util"
version = "0.3.29"
version = "0.3.30"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a19526d624e703a3179b3d322efec918b6246ea0fa51d41124525f00f1cc8104"
checksum = "3d6401deb83407ab3da39eba7e33987a73c3df0c82b4bb5813ee871c19c41d48"
dependencies = [
"futures-channel",
"futures-core",
@ -1373,6 +1373,15 @@ dependencies = [
"unicase",
]
[[package]]
name = "minijinja"
version = "1.0.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "208758577ef2c86cf5dd3e85730d161413ec3284e2d73b2ef65d9a24d9971bcb"
dependencies = [
"serde",
]
[[package]]
name = "minimal-lexical"
version = "0.2.1"
@ -2807,10 +2816,12 @@ dependencies = [
"axum-tracing-opentelemetry",
"clap",
"futures",
"futures-util",
"hf-hub",
"init-tracing-opentelemetry",
"metrics",
"metrics-exporter-prometheus",
"minijinja",
"ngrok",
"nohash-hasher",
"opentelemetry",

View File

@ -43,6 +43,8 @@ utoipa = { version = "3.5.0", features = ["axum_extras"] }
utoipa-swagger-ui = { version = "3.1.5", features = ["axum"] }
ngrok = { version = "0.13.1", features = ["axum"], optional = true }
init-tracing-opentelemetry = { version = "0.14.1", features = ["opentelemetry-otlp"] }
minijinja = "1.0.10"
futures-util = "0.3.30"
[build-dependencies]
vergen = { version = "8.2.5", features = ["build", "git", "gitcl"] }

View File

@ -1,8 +1,10 @@
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
use crate::HubTokenizerConfig;
use crate::{ChatRequest, GenerateRequest, GenerateStreamResponse, PrefillToken};
use crate::{Entry, Queue, Token};
use crate::{GenerateRequest, PrefillToken};
use futures::future::try_join_all;
use minijinja::{Environment, ErrorKind, Template};
use nohash_hasher::IntMap;
use std::sync::{
atomic::{AtomicBool, Ordering},
@ -13,7 +15,7 @@ use text_generation_client::{
};
use thiserror::Error;
use tokio::sync::mpsc::error::SendError;
use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
@ -30,6 +32,8 @@ pub struct Infer {
shared: Arc<Shared>,
/// Inference limit
limit_concurrent_requests: Arc<Semaphore>,
/// Chat template
template: Option<Template<'static, 'static>>,
}
/// Infer shared state
@ -52,6 +56,7 @@ impl Infer {
window_size: Option<u32>,
speculate: u32,
generation_health: Arc<AtomicBool>,
tokenizer_config: HubTokenizerConfig,
) -> Self {
// Infer shared state
let queue = Queue::new(requires_padding, 16, window_size, speculate);
@ -74,11 +79,21 @@ impl Infer {
// Inference limit with a semaphore
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
let template = tokenizer_config.chat_template.map(|t| {
let env = Box::new(Environment::new());
let template_str = t.into_boxed_str();
// leaking env and template_str as read-only, static resources for performance.
Box::leak(env)
.template_from_str(Box::leak(template_str))
.unwrap()
});
Self {
validation,
queue,
shared,
limit_concurrent_requests: semaphore,
template,
}
}
@ -87,14 +102,7 @@ impl Infer {
pub(crate) async fn generate_stream(
&self,
request: GenerateRequest,
) -> Result<
(
OwnedSemaphorePermit,
u32,
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
),
InferError,
> {
) -> Result<GenerateStreamResponse, InferError> {
// Limit concurrent requests by acquiring a permit from the semaphore
let permit = self
.clone()
@ -139,6 +147,20 @@ impl Infer {
))
}
/// Apply the chat template to the chat request
#[instrument(skip_all)]
pub(crate) fn apply_chat_template(&self, chat: ChatRequest) -> Result<String, InferError> {
self.template
.as_ref()
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
.render(chat)
.map_err(|e| {
metrics::increment_counter!("tgi_request_failure", "err" => "template");
tracing::error!("{e}");
InferError::TemplateError(e)
})
}
/// Add a new request to the queue and return a InferResponse
#[instrument(skip_all)]
pub(crate) async fn generate(
@ -550,9 +572,9 @@ fn send_responses(
let mut iterator = tokens_
.ids
.into_iter()
.zip(tokens_.logprobs.into_iter())
.zip(tokens_.texts.into_iter())
.zip(tokens_.is_special.into_iter())
.zip(tokens_.logprobs)
.zip(tokens_.texts)
.zip(tokens_.is_special)
.enumerate()
.peekable();
while let Some((i, (((id, logprob), text), special))) = iterator.next() {
@ -665,6 +687,8 @@ pub enum InferError {
ValidationError(#[from] ValidationError),
#[error("Incomplete generation")]
IncompleteGeneration,
#[error("Template error: {0}")]
TemplateError(#[from] minijinja::Error),
}
impl InferError {
@ -674,6 +698,7 @@ impl InferError {
InferError::Overloaded(_) => "overloaded",
InferError::ValidationError(_) => "validation",
InferError::IncompleteGeneration => "incomplete_generation",
InferError::TemplateError(_) => "template_error",
}
}
}

View File

@ -5,12 +5,21 @@ mod queue;
pub mod server;
mod validation;
use infer::Infer;
use infer::{Infer, InferError, InferStreamResponse};
use queue::{Entry, Queue};
use serde::{Deserialize, Serialize};
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
use utoipa::ToSchema;
use validation::Validation;
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
OwnedSemaphorePermit,
u32, // input_length
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);
/// Hub type
#[derive(Clone, Debug, Deserialize)]
pub struct HubModelInfo {
@ -20,6 +29,19 @@ pub struct HubModelInfo {
pub pipeline_tag: Option<String>,
}
#[derive(Clone, Deserialize, Default)]
pub struct HubTokenizerConfig {
#[serde(default)]
pub chat_template: Option<String>,
}
impl HubTokenizerConfig {
pub fn from_file(filename: &str) -> Self {
let content = std::fs::read_to_string(filename).unwrap();
serde_json::from_str(&content).unwrap_or_default()
}
}
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
/// Model info
@ -152,7 +174,7 @@ fn default_parameters() -> GenerateParameters {
top_k: None,
top_p: None,
typical_p: None,
do_sample: false,
do_sample: true,
max_new_tokens: default_max_new_tokens(),
return_full_text: None,
stop: Vec::new(),
@ -165,6 +187,193 @@ fn default_parameters() -> GenerateParameters {
}
}
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct ChatCompletion {
pub id: String,
pub object: String,
pub created: u64,
pub model: String,
pub system_fingerprint: String,
pub choices: Vec<ChatCompletionComplete>,
pub usage: Usage,
}
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct ChatCompletionComplete {
pub index: u32,
pub message: Message,
pub logprobs: Option<Vec<f32>>,
pub finish_reason: String,
}
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct Usage {
pub prompt_tokens: u32,
pub completion_tokens: u32,
pub total_tokens: u32,
}
impl ChatCompletion {
pub(crate) fn new(
model: String,
system_fingerprint: String,
output: String,
created: u64,
details: Details,
return_logprobs: bool,
) -> Self {
Self {
id: String::new(),
object: "text_completion".into(),
created,
model,
system_fingerprint,
choices: vec![ChatCompletionComplete {
index: 0,
message: Message {
role: "assistant".into(),
content: output,
},
logprobs: return_logprobs
.then(|| details.tokens.iter().map(|t| t.logprob).collect()),
finish_reason: details.finish_reason.to_string(),
}],
usage: Usage {
prompt_tokens: details.prefill.len() as u32,
completion_tokens: details.generated_tokens,
total_tokens: details.prefill.len() as u32 + details.generated_tokens,
},
}
}
}
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct ChatCompletionChunk {
pub id: String,
pub object: String,
pub created: u64,
pub model: String,
pub system_fingerprint: String,
pub choices: Vec<ChatCompletionChoice>,
}
#[derive(Clone, Deserialize, Serialize)]
pub(crate) struct ChatCompletionChoice {
pub index: u32,
pub delta: ChatCompletionDelta,
pub logprobs: Option<f32>,
pub finish_reason: Option<String>,
}
#[derive(Clone, Debug, Deserialize, Serialize)]
pub(crate) struct ChatCompletionDelta {
pub role: String,
pub content: String,
}
impl ChatCompletionChunk {
pub(crate) fn new(
model: String,
system_fingerprint: String,
delta: String,
created: u64,
index: u32,
logprobs: Option<f32>,
finish_reason: Option<String>,
) -> Self {
Self {
id: String::new(),
object: "text_completion".to_string(),
created,
model,
system_fingerprint,
choices: vec![ChatCompletionChoice {
index,
delta: ChatCompletionDelta {
role: "assistant".to_string(),
content: delta,
},
logprobs,
finish_reason,
}],
}
}
}
fn default_request_messages() -> Vec<Message> {
vec![Message {
role: "user".to_string(),
content: "My name is David and I".to_string(),
}]
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
/// UNUSED
#[schema(example = "bigscience/blomm-560m")]
/// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
pub model: String, /* NOTE: UNUSED */
/// A list of messages comprising the conversation so far.
#[serde(default = "default_request_messages")]
pub messages: Vec<Message>,
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
/// decreasing the model's likelihood to repeat the same line verbatim.
#[serde(default)]
pub frequency_penalty: Option<f32>,
/// UNUSED
/// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
/// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
/// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
/// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
/// result in a ban or exclusive selection of the relevant token.
#[serde(default)]
pub logit_bias: Option<Vec<f32>>,
/// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
/// output token returned in the content of message.
#[serde(default)]
pub logprobs: Option<bool>,
/// UNUSED
/// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
/// an associated log probability. logprobs must be set to true if this parameter is used.
#[serde(default)]
pub top_logprobs: Option<u32>,
/// The maximum number of tokens that can be generated in the chat completion.
#[serde(default)]
pub max_tokens: Option<u32>,
/// UNUSED
/// How many chat completion choices to generate for each input message. Note that you will be charged based on the
/// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
#[serde(default)]
pub n: Option<u32>,
/// UNUSED
/// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
/// increasing the model's likelihood to talk about new topics
#[serde(default)]
pub presence_penalty: Option<f32>,
#[serde(default = "bool::default")]
pub stream: bool,
#[schema(nullable = true, example = 42)]
pub seed: Option<u64>,
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct Message {
#[schema(example = "user")]
pub role: String,
#[schema(example = "My name is David and I")]
pub content: String,
}
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct GenerateRequest {
#[schema(example = "My name is Olivier and I")]
@ -227,6 +436,16 @@ pub(crate) enum FinishReason {
StopSequence,
}
impl std::fmt::Display for FinishReason {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
FinishReason::Length => write!(f, "length"),
FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
FinishReason::StopSequence => write!(f, "stop_sequence"),
}
}
}
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
#[schema(example = "test")]
@ -279,6 +498,7 @@ pub(crate) struct StreamDetails {
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamResponse {
pub index: u32,
pub token: Token,
#[serde(skip_serializing_if = "Vec::is_empty")]
pub top_tokens: Vec<Token>,

View File

@ -8,13 +8,12 @@ use opentelemetry::sdk::trace::Sampler;
use opentelemetry::sdk::Resource;
use opentelemetry::{global, KeyValue};
use opentelemetry_otlp::WithExportConfig;
/// Text Generation Inference webserver entrypoint
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::Path;
use text_generation_client::{ClientError, ShardedClient};
use text_generation_router::{server, HubModelInfo};
use text_generation_router::{server, HubModelInfo, HubTokenizerConfig};
use thiserror::Error;
use tokenizers::Tokenizer;
use tower_http::cors::AllowOrigin;
@ -55,6 +54,8 @@ struct Args {
#[clap(default_value = "bigscience/bloom", long, env)]
tokenizer_name: String,
#[clap(long, env)]
tokenizer_config_path: Option<String>,
#[clap(long, env)]
revision: Option<String>,
#[clap(default_value = "2", long, env)]
validation_workers: usize,
@ -92,6 +93,7 @@ async fn main() -> Result<(), RouterError> {
port,
master_shard_uds_path,
tokenizer_name,
tokenizer_config_path,
revision,
validation_workers,
json_output,
@ -149,40 +151,64 @@ async fn main() -> Result<(), RouterError> {
let local_path = Path::new(&tokenizer_name);
let local_model = local_path.exists() && local_path.is_dir();
let (tokenizer, model_info) = if local_model {
// Get Model info
let model_info = HubModelInfo {
model_id: tokenizer_name.clone(),
sha: None,
pipeline_tag: None,
};
// Load tokenizer config
// This will be used to format the chat template
let local_tokenizer_config_path =
tokenizer_config_path.unwrap_or("tokenizer_config.json".to_string());
let local_tokenizer_config = Path::new(&local_tokenizer_config_path).exists();
// Load local tokenizer
let tokenizer = Tokenizer::from_file(local_path.join("tokenizer.json")).ok();
(tokenizer, model_info)
} else {
// Shared API builder initialization
let api_builder = || {
let mut builder = ApiBuilder::new()
.with_progress(false)
.with_token(authorization_token);
if let Some(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE").ok() {
if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
builder = builder.with_cache_dir(cache_dir.into());
}
if revision.is_none() {
tracing::warn!("`--revision` is not set");
tracing::warn!("We strongly advise to set it to a known supported commit.");
}
builder
};
let api = builder.build().unwrap();
// Decide if we need to use the API based on the revision and local path
let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
// Initialize API if needed
let api = if use_api {
tracing::info!("Using the Hugging Face API");
match api_builder().build() {
Ok(api) => Some(api),
Err(_) => {
tracing::warn!("Unable to build the Hugging Face API");
None
}
}
} else {
None
};
// Load tokenizer and model info
let (tokenizer, model_info) = if local_model {
let tokenizer = Tokenizer::from_file(local_path.join("tokenizer.json")).ok();
let model_info = HubModelInfo {
model_id: tokenizer_name.to_string(),
sha: None,
pipeline_tag: None,
};
(tokenizer, model_info)
} else if let Some(api) = api.clone() {
let api_repo = api.repo(Repo::with_revision(
tokenizer_name.clone(),
tokenizer_name.to_string(),
RepoType::Model,
revision.clone().unwrap_or("main".to_string()),
revision.clone().unwrap_or_else(|| "main".to_string()),
));
// Get Model info
let tokenizer = match api_repo.get("tokenizer.json").await {
Ok(tokenizer_filename) => Tokenizer::from_file(tokenizer_filename).ok(),
Err(_) => get_base_tokenizer(&api, &api_repo).await,
};
let model_info = get_model_info(&api_repo).await.unwrap_or_else(|| {
tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
HubModelInfo {
@ -192,12 +218,33 @@ async fn main() -> Result<(), RouterError> {
}
});
let tokenizer = match api_repo.get("tokenizer.json").await {
Ok(tokenizer_filename) => Tokenizer::from_file(tokenizer_filename).ok(),
Err(_) => get_base_tokenizer(&api, &api_repo).await,
};
(tokenizer, model_info)
} else {
// No API and no local model
return Err(RouterError::ArgumentValidation(
"No local model found and no revision specified".to_string(),
));
};
// Load tokenizer config if found locally, or check if we can get it from the API if needed
let tokenizer_config = if local_tokenizer_config {
tracing::info!("Using local tokenizer config");
HubTokenizerConfig::from_file(&local_tokenizer_config_path)
} else if let Some(api) = api {
tracing::info!("Using the Hugging Face API to retrieve tokenizer config");
get_tokenizer_config(&api.repo(Repo::with_revision(
tokenizer_name.to_string(),
RepoType::Model,
revision.unwrap_or_else(|| "main".to_string()),
)))
.await
.unwrap_or_else(|| {
tracing::warn!("Could not retrieve tokenizer config from the Hugging Face hub.");
HubTokenizerConfig::default()
})
} else {
tracing::warn!("Could not find tokenizer config locally and no revision specified");
HubTokenizerConfig::default()
};
if tokenizer.is_none() {
@ -297,6 +344,7 @@ async fn main() -> Result<(), RouterError> {
ngrok,
ngrok_authtoken,
ngrok_edge,
tokenizer_config,
)
.await?;
Ok(())
@ -401,6 +449,20 @@ pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<Tokeniz
}
}
/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(tokenizer_config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader).ok()?;
Some(tokenizer_config)
}
#[derive(Debug, Error)]
enum RouterError {
#[error("Argument validation error: {0}")]

View File

@ -2,10 +2,11 @@
use crate::health::Health;
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
use crate::HubTokenizerConfig;
use crate::{
BestOfSequence, CompatGenerateRequest, Details, ErrorResponse, FinishReason,
GenerateParameters, GenerateRequest, GenerateResponse, HubModelInfo, Infer, Info, PrefillToken,
StreamDetails, StreamResponse, Token, Validation,
BestOfSequence, ChatCompletion, ChatCompletionChunk, ChatRequest, CompatGenerateRequest,
Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest, GenerateResponse,
HubModelInfo, Infer, Info, PrefillToken, StreamDetails, StreamResponse, Token, Validation,
};
use axum::extract::Extension;
use axum::http::{HeaderMap, Method, StatusCode};
@ -343,6 +344,21 @@ async fn generate_stream(
HeaderMap,
Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
let on_message_callback = |stream_token: StreamResponse| {
let event = Event::default();
event.json_data(stream_token).unwrap()
};
let (headers, response_stream) =
generate_stream_internal(infer, Json(req), on_message_callback).await;
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
(headers, sse)
}
async fn generate_stream_internal(
infer: Infer,
Json(req): Json<GenerateRequest>,
on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
let span = tracing::Span::current();
let start_time = Instant::now();
metrics::increment_counter!("tgi_request_count");
@ -385,8 +401,10 @@ async fn generate_stream(
match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
// Keep permit as long as generate_stream lives
Ok((_permit, _input_length, mut response_stream)) => {
let mut index = 0;
// Server-Sent Event stream
while let Some(response) = response_stream.next().await {
index += 1;
match response {
Ok(response) => {
match response {
@ -401,13 +419,14 @@ async fn generate_stream(
// StreamResponse
let stream_token = StreamResponse {
index,
token,
top_tokens,
generated_text: None,
details: None,
};
yield Ok(Event::default().json_data(stream_token).unwrap())
let event = on_message_callback(stream_token);
yield Ok(event);
}
// Yield event for last token and compute timings
InferStreamResponse::End {
@ -463,13 +482,16 @@ async fn generate_stream(
tracing::info!(parent: &span, "Success");
let stream_token = StreamResponse {
index,
token,
top_tokens,
generated_text: Some(output_text),
details
};
yield Ok(Event::default().json_data(stream_token).unwrap());
let event = on_message_callback(stream_token);
yield Ok(event);
break;
}
}
@ -500,7 +522,154 @@ async fn generate_stream(
}
};
(headers, Sse::new(stream).keep_alive(KeepAlive::default()))
(headers, stream)
}
/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn chat_completions(
Extension(infer): Extension<Infer>,
Extension(info): Extension<Info>,
Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
metrics::increment_counter!("tgi_request_count");
let stream = req.stream;
let max_new_tokens = req.max_tokens.or(Some(100));
let repetition_penalty = req
.frequency_penalty
// rescale frequency_penalty from (-2.0, 2.0) to (0.0, 4.0)
.map(|x| x + 2.0);
let logprobs = req.logprobs.unwrap_or(false);
let seed = req.seed;
// apply chat template to flatten the request into a single input
let inputs = match infer.apply_chat_template(req) {
Ok(inputs) => inputs,
Err(err) => {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
Json(ErrorResponse {
error: err.to_string(),
error_type: err.error_type().to_string(),
}),
));
}
};
// build the request passing some parameters
let generate_request = GenerateRequest {
inputs: inputs.to_string(),
parameters: GenerateParameters {
best_of: None,
temperature: None,
repetition_penalty,
top_k: None,
top_p: None,
typical_p: None,
do_sample: true,
max_new_tokens,
return_full_text: None,
stop: Vec::new(),
truncate: None,
watermark: false,
details: true,
decoder_input_details: true,
seed,
top_n_tokens: None,
},
};
// static values that will be returned in all cases
let model_id = info.model_id.clone();
let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
// switch on stream
if stream {
// pass this callback to the stream generation and build the required event structure
let on_message_callback = move |stream_token: StreamResponse| {
let event = Event::default();
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
event
.json_data(ChatCompletionChunk::new(
model_id.clone(),
system_fingerprint.clone(),
stream_token.token.text,
current_time,
stream_token.index,
logprobs.then_some(stream_token.token.logprob),
stream_token.details.map(|d| d.finish_reason.to_string()),
))
.map_or_else(
|e| {
println!("Failed to serialize ChatCompletionChunk: {:?}", e);
Event::default()
},
|data| data,
)
};
let (headers, response_stream) =
generate_stream_internal(infer, Json(generate_request), on_message_callback).await;
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
Ok((headers, sse).into_response())
} else {
let (headers, Json(generation)) =
generate(Extension(infer), Json(generate_request)).await?;
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
// build the complete response object with the full text
let response = ChatCompletion::new(
generation.generated_text,
model_id,
system_fingerprint,
current_time,
generation.details.unwrap(),
logprobs,
);
// wrap generation inside a Vec to match api-inference
Ok((headers, Json(response)).into_response())
}
}
/// Prometheus metrics scrape endpoint
@ -538,6 +707,7 @@ pub async fn run(
ngrok: bool,
ngrok_authtoken: Option<String>,
ngrok_edge: Option<String>,
tokenizer_config: HubTokenizerConfig,
) -> Result<(), axum::BoxError> {
// OpenAPI documentation
#[derive(OpenApi)]
@ -604,6 +774,7 @@ pub async fn run(
shard_info.window_size,
shard_info.speculate,
generation_health,
tokenizer_config,
);
// Duration buckets
@ -693,6 +864,7 @@ pub async fn run(
.route("/info", get(get_model_info))
.route("/generate", post(generate))
.route("/generate_stream", post(generate_stream))
.route("/v1/chat/completions", post(chat_completions))
// AWS Sagemaker route
.route("/invocations", post(compat_generate))
// Base Health route
@ -822,6 +994,7 @@ impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
};
(

View File

@ -376,7 +376,7 @@ type TokenizerRequest = (
Span,
);
#[derive(Debug)]
#[derive(Debug, Clone)]
pub(crate) struct ValidGenerateRequest {
pub inputs: String,
pub input_length: u32,