feat: add safetensors conversion (#63)
This commit is contained in:
parent
9af454142a
commit
0fbc691946
|
@ -49,17 +49,17 @@ to power LLMs api-inference widgets.
|
|||
- Log probabilities
|
||||
- Distributed tracing with Open Telemetry
|
||||
|
||||
## Officially supported models
|
||||
## Officially supported architectures
|
||||
|
||||
- [BLOOM](https://huggingface.co/bigscience/bloom)
|
||||
- [BLOOMZ](https://huggingface.co/bigscience/bloomz)
|
||||
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
|
||||
- ~~[Galactica](https://huggingface.co/facebook/galactica-120b)~~ (deactivated)
|
||||
- [Galactica](https://huggingface.co/facebook/galactica-120b)
|
||||
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
||||
- [GPT-Neox 20B](https://huggingface.co/EleutherAI/gpt-neox-20b)
|
||||
- [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl)
|
||||
|
||||
Other models are supported on a best effort basis using:
|
||||
Other architectures are supported on a best effort basis using:
|
||||
|
||||
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
|
||||
|
||||
|
@ -191,7 +191,7 @@ Be aware that the official Docker image has them enabled by default.
|
|||
|
||||
### Download
|
||||
|
||||
First you need to download the weights:
|
||||
It is advised to download the weights ahead of time with the following command:
|
||||
|
||||
```shell
|
||||
make download-bloom
|
||||
|
|
|
@ -12,7 +12,7 @@ use std::thread;
|
|||
use std::thread::sleep;
|
||||
use std::time::{Duration, Instant};
|
||||
use std::{fs, io};
|
||||
use subprocess::{Popen, PopenConfig, PopenError, Redirection};
|
||||
use subprocess::{ExitStatus, Popen, PopenConfig, PopenError, Redirection};
|
||||
|
||||
/// App Configuration
|
||||
#[derive(Parser, Debug)]
|
||||
|
@ -43,6 +43,10 @@ struct Args {
|
|||
#[clap(default_value = "29500", long, env)]
|
||||
master_port: usize,
|
||||
#[clap(long, env)]
|
||||
huggingface_hub_cache: Option<String>,
|
||||
#[clap(long, env)]
|
||||
weights_cache_override: Option<String>,
|
||||
#[clap(long, env)]
|
||||
json_output: bool,
|
||||
#[clap(long, env)]
|
||||
otlp_endpoint: Option<String>,
|
||||
|
@ -63,6 +67,8 @@ fn main() -> ExitCode {
|
|||
shard_uds_path,
|
||||
master_addr,
|
||||
master_port,
|
||||
huggingface_hub_cache,
|
||||
weights_cache_override,
|
||||
json_output,
|
||||
otlp_endpoint,
|
||||
} = Args::parse();
|
||||
|
@ -84,6 +90,124 @@ fn main() -> ExitCode {
|
|||
})
|
||||
.expect("Error setting Ctrl-C handler");
|
||||
|
||||
// Download weights
|
||||
if weights_cache_override.is_none() {
|
||||
let mut download_argv = vec![
|
||||
"text-generation-server".to_string(),
|
||||
"download-weights".to_string(),
|
||||
model_id.clone(),
|
||||
"--logger-level".to_string(),
|
||||
"INFO".to_string(),
|
||||
"--json-output".to_string(),
|
||||
];
|
||||
if num_shard == 1 {
|
||||
download_argv.push("--extension".to_string());
|
||||
download_argv.push(".bin".to_string());
|
||||
} else {
|
||||
download_argv.push("--extension".to_string());
|
||||
download_argv.push(".safetensors".to_string());
|
||||
}
|
||||
|
||||
// Model optional revision
|
||||
if let Some(ref revision) = revision {
|
||||
download_argv.push("--revision".to_string());
|
||||
download_argv.push(revision.to_string())
|
||||
}
|
||||
|
||||
let mut env = Vec::new();
|
||||
|
||||
// If the HUGGINGFACE_HUB_CACHE env var is set, pass it to the shard
|
||||
// Useful when running inside a docker container
|
||||
if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
|
||||
env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
|
||||
};
|
||||
|
||||
// Start process
|
||||
tracing::info!("Starting download");
|
||||
let mut download_process = match Popen::create(
|
||||
&download_argv,
|
||||
PopenConfig {
|
||||
stdout: Redirection::Pipe,
|
||||
stderr: Redirection::Pipe,
|
||||
// Needed for the shutdown procedure
|
||||
setpgid: true,
|
||||
env: Some(env),
|
||||
..Default::default()
|
||||
},
|
||||
) {
|
||||
Ok(p) => p,
|
||||
Err(err) => {
|
||||
if let PopenError::IoError(ref err) = err {
|
||||
if err.kind() == io::ErrorKind::NotFound {
|
||||
tracing::error!("text-generation-server not found in PATH");
|
||||
tracing::error!("Please install it with `make install-server`")
|
||||
}
|
||||
}
|
||||
return ExitCode::FAILURE;
|
||||
}
|
||||
};
|
||||
|
||||
// Redirect STDOUT to the console
|
||||
let download_stdout = download_process.stdout.take().unwrap();
|
||||
thread::spawn(move || {
|
||||
// Enter download tracing span
|
||||
let stdout = BufReader::new(download_stdout);
|
||||
let _span = tracing::span!(tracing::Level::INFO, "download").entered();
|
||||
for line in stdout.lines() {
|
||||
// Parse loguru logs
|
||||
if let Ok(value) = serde_json::from_str::<Value>(&line.unwrap()) {
|
||||
if let Some(text) = value.get("text") {
|
||||
// Format escaped newlines
|
||||
tracing::info!("{}", text.to_string().replace("\\n", ""));
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
loop {
|
||||
if let Some(status) = download_process.poll() {
|
||||
match status {
|
||||
ExitStatus::Exited(exit_code) => {
|
||||
if exit_code == 0 {
|
||||
tracing::info!("Successfully downloaded weights.");
|
||||
break;
|
||||
} else {
|
||||
let mut err = String::new();
|
||||
download_process
|
||||
.stderr
|
||||
.take()
|
||||
.unwrap()
|
||||
.read_to_string(&mut err)
|
||||
.unwrap();
|
||||
tracing::error!("Download encountered an error: {err}");
|
||||
return ExitCode::FAILURE;
|
||||
}
|
||||
}
|
||||
_ => {
|
||||
tracing::error!("Download process exited with an unkown status.");
|
||||
return ExitCode::FAILURE;
|
||||
}
|
||||
}
|
||||
}
|
||||
if !running.load(Ordering::SeqCst) {
|
||||
download_process.terminate().unwrap();
|
||||
tracing::info!("Waiting for download process to gracefully shutdown");
|
||||
download_process
|
||||
.wait_timeout(Duration::from_secs(90))
|
||||
.unwrap();
|
||||
tracing::info!("Download process terminated");
|
||||
return ExitCode::SUCCESS;
|
||||
}
|
||||
sleep(Duration::from_millis(100));
|
||||
}
|
||||
} else {
|
||||
tracing::info!(
|
||||
"weights_cache_override is set to {:?}.",
|
||||
weights_cache_override
|
||||
);
|
||||
tracing::info!("Skipping download.")
|
||||
}
|
||||
|
||||
// Shared shutdown bool
|
||||
let shutdown = Arc::new(Mutex::new(false));
|
||||
// Shared shutdown channel
|
||||
|
@ -99,6 +223,8 @@ fn main() -> ExitCode {
|
|||
let revision = revision.clone();
|
||||
let uds_path = shard_uds_path.clone();
|
||||
let master_addr = master_addr.clone();
|
||||
let huggingface_hub_cache = huggingface_hub_cache.clone();
|
||||
let weights_cache_override = weights_cache_override.clone();
|
||||
let status_sender = status_sender.clone();
|
||||
let shutdown = shutdown.clone();
|
||||
let shutdown_sender = shutdown_sender.clone();
|
||||
|
@ -113,6 +239,8 @@ fn main() -> ExitCode {
|
|||
num_shard,
|
||||
master_addr,
|
||||
master_port,
|
||||
huggingface_hub_cache,
|
||||
weights_cache_override,
|
||||
otlp_endpoint,
|
||||
status_sender,
|
||||
shutdown,
|
||||
|
@ -232,7 +360,7 @@ fn main() -> ExitCode {
|
|||
|
||||
while running.load(Ordering::SeqCst) {
|
||||
if let Ok(ShardStatus::Failed((rank, err))) = status_receiver.try_recv() {
|
||||
tracing::error!("Shard {} failed:\n{}", rank, err);
|
||||
tracing::error!("Shard {rank} failed:\n{err}");
|
||||
exit_code = ExitCode::FAILURE;
|
||||
break;
|
||||
};
|
||||
|
@ -275,6 +403,8 @@ fn shard_manager(
|
|||
world_size: usize,
|
||||
master_addr: String,
|
||||
master_port: usize,
|
||||
huggingface_hub_cache: Option<String>,
|
||||
weights_cache_override: Option<String>,
|
||||
otlp_endpoint: Option<String>,
|
||||
status_sender: mpsc::Sender<ShardStatus>,
|
||||
shutdown: Arc<Mutex<bool>>,
|
||||
|
@ -328,15 +458,15 @@ fn shard_manager(
|
|||
("NCCL_ASYNC_ERROR_HANDLING".into(), "1".into()),
|
||||
];
|
||||
|
||||
// If the HUGGINGFACE_HUB_CACHE env var is set, pass it to the shard
|
||||
// If huggingface_hub_cache is some, pass it to the shard
|
||||
// Useful when running inside a docker container
|
||||
if let Ok(huggingface_hub_cache) = env::var("HUGGINGFACE_HUB_CACHE") {
|
||||
if let Some(huggingface_hub_cache) = huggingface_hub_cache {
|
||||
env.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
|
||||
};
|
||||
|
||||
// If the WEIGHTS_CACHE_OVERRIDE env var is set, pass it to the shard
|
||||
// If weights_cache_override is some, pass it to the shard
|
||||
// Useful when running inside a HuggingFace Inference Endpoint
|
||||
if let Ok(weights_cache_override) = env::var("WEIGHTS_CACHE_OVERRIDE") {
|
||||
if let Some(weights_cache_override) = weights_cache_override {
|
||||
env.push((
|
||||
"WEIGHTS_CACHE_OVERRIDE".into(),
|
||||
weights_cache_override.into(),
|
||||
|
@ -355,7 +485,7 @@ fn shard_manager(
|
|||
};
|
||||
|
||||
// Start process
|
||||
tracing::info!("Starting shard {}", rank);
|
||||
tracing::info!("Starting shard {rank}");
|
||||
let mut p = match Popen::create(
|
||||
&shard_argv,
|
||||
PopenConfig {
|
||||
|
@ -419,17 +549,17 @@ fn shard_manager(
|
|||
if *shutdown.lock().unwrap() {
|
||||
p.terminate().unwrap();
|
||||
let _ = p.wait_timeout(Duration::from_secs(90));
|
||||
tracing::info!("Shard {} terminated", rank);
|
||||
tracing::info!("Shard {rank} terminated");
|
||||
return;
|
||||
}
|
||||
|
||||
// Shard is ready
|
||||
if uds.exists() && !ready {
|
||||
tracing::info!("Shard {} ready in {:?}", rank, start_time.elapsed());
|
||||
tracing::info!("Shard {rank} ready in {:?}", start_time.elapsed());
|
||||
status_sender.send(ShardStatus::Ready).unwrap();
|
||||
ready = true;
|
||||
} else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
|
||||
tracing::info!("Waiting for shard {} to be ready...", rank);
|
||||
tracing::info!("Waiting for shard {rank} to be ready...");
|
||||
wait_time = Instant::now();
|
||||
}
|
||||
sleep(Duration::from_millis(100));
|
||||
|
|
|
@ -0,0 +1,17 @@
|
|||
from text_generation.utils.hub import download_weights, weight_hub_files, weight_files
|
||||
|
||||
from text_generation.utils.convert import convert_files
|
||||
|
||||
|
||||
def test_convert_files():
|
||||
model_id = "bigscience/bloom-560m"
|
||||
pt_filenames = weight_hub_files(model_id, extension=".bin")
|
||||
local_pt_files = download_weights(pt_filenames, model_id)
|
||||
local_st_files = [
|
||||
p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors" for p in local_pt_files
|
||||
]
|
||||
convert_files(local_pt_files, local_st_files)
|
||||
|
||||
found_st_files = weight_files(model_id)
|
||||
|
||||
assert all([p in found_st_files for p in local_st_files])
|
|
@ -0,0 +1,40 @@
|
|||
import pytest
|
||||
|
||||
from text_generation.utils.hub import (
|
||||
weight_hub_files,
|
||||
download_weights,
|
||||
weight_files,
|
||||
EntryNotFoundError,
|
||||
LocalEntryNotFoundError,
|
||||
RevisionNotFoundError,
|
||||
)
|
||||
|
||||
|
||||
def test_weight_hub_files():
|
||||
filenames = weight_hub_files("bigscience/bloom-560m")
|
||||
assert filenames == ["model.safetensors"]
|
||||
|
||||
|
||||
def test_weight_hub_files_llm():
|
||||
filenames = weight_hub_files("bigscience/bloom")
|
||||
assert filenames == [f"model_{i:05d}-of-00072.safetensors" for i in range(1, 73)]
|
||||
|
||||
|
||||
def test_weight_hub_files_empty():
|
||||
with pytest.raises(EntryNotFoundError):
|
||||
weight_hub_files("bigscience/bloom", extension=".errors")
|
||||
|
||||
|
||||
def test_download_weights():
|
||||
model_id = "bigscience/bloom-560m"
|
||||
filenames = weight_hub_files(model_id)
|
||||
files = download_weights(filenames, model_id)
|
||||
local_files = weight_files("bigscience/bloom-560m")
|
||||
assert files == local_files
|
||||
|
||||
|
||||
def test_weight_files_error():
|
||||
with pytest.raises(RevisionNotFoundError):
|
||||
weight_files("bigscience/bloom-560m", revision="error")
|
||||
with pytest.raises(LocalEntryNotFoundError):
|
||||
weight_files("bert-base-uncased")
|
|
@ -1,14 +1,6 @@
|
|||
import pytest
|
||||
|
||||
from huggingface_hub.utils import RevisionNotFoundError
|
||||
|
||||
from text_generation.utils import (
|
||||
weight_hub_files,
|
||||
download_weights,
|
||||
weight_files,
|
||||
from text_generation.utils.tokens import (
|
||||
StopSequenceCriteria,
|
||||
StoppingCriteria,
|
||||
LocalEntryNotFoundError,
|
||||
FinishReason,
|
||||
)
|
||||
|
||||
|
@ -41,31 +33,3 @@ def test_stopping_criteria_max():
|
|||
assert criteria(1, "") == (False, None)
|
||||
assert criteria(1, "") == (False, None)
|
||||
assert criteria(1, "") == (True, FinishReason.FINISH_REASON_LENGTH)
|
||||
|
||||
|
||||
def test_weight_hub_files():
|
||||
filenames = weight_hub_files("bigscience/bloom-560m")
|
||||
assert filenames == ["model.safetensors"]
|
||||
|
||||
|
||||
def test_weight_hub_files_llm():
|
||||
filenames = weight_hub_files("bigscience/bloom")
|
||||
assert filenames == [f"model_{i:05d}-of-00072.safetensors" for i in range(1, 73)]
|
||||
|
||||
|
||||
def test_weight_hub_files_empty():
|
||||
filenames = weight_hub_files("bigscience/bloom", extension=".errors")
|
||||
assert filenames == []
|
||||
|
||||
|
||||
def test_download_weights():
|
||||
files = download_weights("bigscience/bloom-560m")
|
||||
local_files = weight_files("bigscience/bloom-560m")
|
||||
assert files == local_files
|
||||
|
||||
|
||||
def test_weight_files_error():
|
||||
with pytest.raises(RevisionNotFoundError):
|
||||
weight_files("bigscience/bloom-560m", revision="error")
|
||||
with pytest.raises(LocalEntryNotFoundError):
|
||||
weight_files("bert-base-uncased")
|
|
@ -60,8 +60,55 @@ def download_weights(
|
|||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
extension: str = ".safetensors",
|
||||
logger_level: str = "INFO",
|
||||
json_output: bool = False,
|
||||
):
|
||||
utils.download_weights(model_id, revision, extension)
|
||||
# Remove default handler
|
||||
logger.remove()
|
||||
logger.add(
|
||||
sys.stdout,
|
||||
format="{message}",
|
||||
filter="text_generation",
|
||||
level=logger_level,
|
||||
serialize=json_output,
|
||||
backtrace=True,
|
||||
diagnose=False,
|
||||
)
|
||||
|
||||
# Test if files were already download
|
||||
try:
|
||||
utils.weight_files(model_id, revision, extension)
|
||||
logger.info(
|
||||
"Files are already present in the local cache. " "Skipping download."
|
||||
)
|
||||
return
|
||||
# Local files not found
|
||||
except utils.LocalEntryNotFoundError:
|
||||
pass
|
||||
|
||||
# Download weights directly
|
||||
try:
|
||||
filenames = utils.weight_hub_files(model_id, revision, extension)
|
||||
utils.download_weights(filenames, model_id, revision)
|
||||
except utils.EntryNotFoundError as e:
|
||||
if not extension == ".safetensors":
|
||||
raise e
|
||||
|
||||
logger.warning(
|
||||
f"No safetensors weights found for model {model_id} at revision {revision}. "
|
||||
f"Converting PyTorch weights instead."
|
||||
)
|
||||
|
||||
# Try to see if there are pytorch weights
|
||||
pt_filenames = utils.weight_hub_files(model_id, revision, ".bin")
|
||||
# Download pytorch weights
|
||||
local_pt_files = utils.download_weights(pt_filenames, model_id, revision)
|
||||
local_st_files = [
|
||||
p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors"
|
||||
for p in local_pt_files
|
||||
]
|
||||
# Convert pytorch weights to safetensors
|
||||
utils.convert_files(local_pt_files, local_st_files)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -41,6 +41,15 @@ torch.set_grad_enabled(False)
|
|||
def get_model(
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
) -> Model:
|
||||
if model_id.startswith("facebook/galactica"):
|
||||
if sharded:
|
||||
return GalacticaSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Galactica(model_id, revision, quantize=quantize)
|
||||
|
||||
if "santacoder" in model_id:
|
||||
return SantaCoder(model_id, revision, quantize)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id, revision=revision)
|
||||
|
||||
if config.model_type == "bloom":
|
||||
|
@ -48,27 +57,22 @@ def get_model(
|
|||
return BLOOMSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return BLOOM(model_id, revision, quantize=quantize)
|
||||
elif config.model_type == "gpt_neox":
|
||||
|
||||
if config.model_type == "gpt_neox":
|
||||
if sharded:
|
||||
return GPTNeoxSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return GPTNeox(model_id, revision, quantize=quantize)
|
||||
elif config.model_type == "t5":
|
||||
|
||||
if config.model_type == "t5":
|
||||
if sharded:
|
||||
return T5Sharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
||||
elif model_id.startswith("facebook/galactica"):
|
||||
if sharded:
|
||||
return GalacticaSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Galactica(model_id, revision, quantize=quantize)
|
||||
elif "santacoder" in model_id:
|
||||
return SantaCoder(model_id, revision, quantize)
|
||||
else:
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
try:
|
||||
return CausalLM(model_id, revision, quantize=quantize)
|
||||
except Exception:
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
||||
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
try:
|
||||
return CausalLM(model_id, revision, quantize=quantize)
|
||||
except Exception:
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
||||
|
|
|
@ -23,7 +23,6 @@ from text_generation.pb import generate_pb2
|
|||
from text_generation.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
|
@ -80,14 +79,8 @@ class BLOOMSharded(BLOOM):
|
|||
)
|
||||
config.pad_token_id = 3
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master and model_id == "bigscience/bloom-560m":
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
|
|
@ -26,7 +26,6 @@ from text_generation.utils import (
|
|||
StoppingCriteria,
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
|
@ -172,14 +171,8 @@ class GalacticaSharded(Galactica):
|
|||
)
|
||||
tokenizer.pad_token_id = config.pad_token_id
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master and model_id == "facebook/galactica-125m":
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
|
|
@ -20,7 +20,6 @@ from text_generation.models import CausalLM
|
|||
from text_generation.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
|
@ -69,14 +68,8 @@ class GPTNeoxSharded(GPTNeox):
|
|||
model_id, revision=revision, tp_parallel=True
|
||||
)
|
||||
|
||||
# Only master download weights
|
||||
if self.master:
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import Optional, List, Tuple
|
||||
from typing import Optional, List
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
from text_generation.models import CausalLM
|
||||
|
|
|
@ -20,7 +20,6 @@ from text_generation.models import Seq2SeqLM
|
|||
from text_generation.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
|
@ -53,14 +52,8 @@ class T5Sharded(Seq2SeqLM):
|
|||
)
|
||||
tokenizer.bos_token_id = config.decoder_start_token_id
|
||||
|
||||
# Only master download weights
|
||||
if self.master:
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForSeq2SeqLM.from_config(config)
|
||||
|
|
|
@ -1,283 +0,0 @@
|
|||
import concurrent
|
||||
import os
|
||||
import re
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from datetime import timedelta
|
||||
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
from pathlib import Path
|
||||
from huggingface_hub import HfApi, hf_hub_download, _CACHED_NO_EXIST
|
||||
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
||||
from huggingface_hub.utils import LocalEntryNotFoundError
|
||||
from tqdm import tqdm
|
||||
from typing import List, Optional, Tuple
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from transformers.generation.logits_process import (
|
||||
LogitsProcessorList,
|
||||
RepetitionPenaltyLogitsProcessor,
|
||||
TemperatureLogitsWarper,
|
||||
TopPLogitsWarper,
|
||||
TopKLogitsWarper,
|
||||
)
|
||||
|
||||
from text_generation.pb import generate_pb2
|
||||
from text_generation.pb.generate_pb2 import FinishReason
|
||||
|
||||
WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
|
||||
|
||||
|
||||
class Sampling:
|
||||
def __init__(self, seed: int, device: str = "cpu"):
|
||||
self.generator = torch.Generator(device)
|
||||
self.generator.manual_seed(seed)
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, logits):
|
||||
probs = torch.nn.functional.softmax(logits)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1, generator=self.generator)
|
||||
return next_tokens
|
||||
|
||||
|
||||
class Greedy:
|
||||
def __call__(self, logits):
|
||||
return logits.argmax()
|
||||
|
||||
|
||||
class NextTokenChooser:
|
||||
def __init__(
|
||||
self,
|
||||
temperature=1.0,
|
||||
repetition_penalty=1.0,
|
||||
top_k=None,
|
||||
top_p=None,
|
||||
do_sample=False,
|
||||
seed=0,
|
||||
device="cpu",
|
||||
):
|
||||
warpers = LogitsProcessorList()
|
||||
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
||||
# all samplers can be found in `generation_utils_samplers.py`
|
||||
sampling = do_sample
|
||||
if temperature is not None and temperature != 1.0:
|
||||
temperature = float(temperature)
|
||||
warpers.append(TemperatureLogitsWarper(temperature))
|
||||
sampling = True
|
||||
if top_k is not None and top_k != 0:
|
||||
warpers.append(TopKLogitsWarper(top_k=top_k))
|
||||
sampling = True
|
||||
if top_p is not None and top_p < 1.0:
|
||||
warpers.append(TopPLogitsWarper(top_p=top_p))
|
||||
sampling = True
|
||||
if repetition_penalty is not None and repetition_penalty != 1.0:
|
||||
warpers.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
|
||||
|
||||
self.warpers = warpers
|
||||
self.choice = Sampling(seed, device) if sampling else Greedy()
|
||||
|
||||
def __call__(self, input_ids, scores):
|
||||
# Warp logits
|
||||
scores = self.warpers(input_ids, scores)
|
||||
|
||||
# Compute logprobs
|
||||
logprobs = torch.log_softmax(scores, -1)
|
||||
|
||||
# Choose tokens
|
||||
next_id = self.choice(scores[-1])
|
||||
|
||||
return next_id.view(1, 1), logprobs
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls, pb: generate_pb2.NextTokenChooserParameters, device: torch.device
|
||||
) -> "NextTokenChooser":
|
||||
return NextTokenChooser(
|
||||
temperature=pb.temperature,
|
||||
repetition_penalty=pb.repetition_penalty,
|
||||
top_k=pb.top_k,
|
||||
top_p=pb.top_p,
|
||||
do_sample=pb.do_sample,
|
||||
seed=pb.seed,
|
||||
device=device,
|
||||
)
|
||||
|
||||
|
||||
class StopSequenceCriteria:
|
||||
def __init__(self, stop_sequence: str):
|
||||
self.regex = re.compile(f".*{stop_sequence}$")
|
||||
|
||||
def __call__(self, output: str) -> bool:
|
||||
if self.regex.findall(output):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class StoppingCriteria:
|
||||
def __init__(
|
||||
self,
|
||||
eos_token_id: int,
|
||||
stop_sequence_criterias: List[StopSequenceCriteria],
|
||||
max_new_tokens=20,
|
||||
):
|
||||
self.eos_token_id = eos_token_id
|
||||
self.stop_sequence_criterias = stop_sequence_criterias
|
||||
self.max_new_tokens = max_new_tokens
|
||||
self.current_tokens = 0
|
||||
self.current_output = ""
|
||||
|
||||
def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
|
||||
self.current_tokens += 1
|
||||
if self.current_tokens >= self.max_new_tokens:
|
||||
return True, FinishReason.FINISH_REASON_LENGTH
|
||||
|
||||
if last_token == self.eos_token_id:
|
||||
return True, FinishReason.FINISH_REASON_EOS_TOKEN
|
||||
|
||||
self.current_output += last_output
|
||||
for stop_sequence_criteria in self.stop_sequence_criterias:
|
||||
if stop_sequence_criteria(self.current_output):
|
||||
return True, FinishReason.FINISH_REASON_STOP_SEQUENCE
|
||||
|
||||
return False, None
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls,
|
||||
pb: generate_pb2.StoppingCriteriaParameters,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> "StoppingCriteria":
|
||||
stop_sequence_criterias = [
|
||||
StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
|
||||
]
|
||||
return StoppingCriteria(
|
||||
tokenizer.eos_token_id, stop_sequence_criterias, pb.max_new_tokens
|
||||
)
|
||||
|
||||
|
||||
def initialize_torch_distributed():
|
||||
rank = int(os.getenv("RANK", "0"))
|
||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||
|
||||
if torch.cuda.is_available():
|
||||
from torch.distributed import ProcessGroupNCCL
|
||||
|
||||
# Set the device id.
|
||||
assert world_size <= torch.cuda.device_count(), "Each process is one gpu"
|
||||
device = rank % torch.cuda.device_count()
|
||||
torch.cuda.set_device(device)
|
||||
backend = "nccl"
|
||||
options = ProcessGroupNCCL.Options()
|
||||
options.is_high_priority_stream = True
|
||||
options._timeout = timedelta(seconds=60)
|
||||
else:
|
||||
backend = "gloo"
|
||||
options = None
|
||||
|
||||
# Call the init process.
|
||||
torch.distributed.init_process_group(
|
||||
backend=backend,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
timeout=timedelta(seconds=60),
|
||||
pg_options=options,
|
||||
)
|
||||
|
||||
return torch.distributed.group.WORLD, rank, world_size
|
||||
|
||||
|
||||
def weight_hub_files(model_id, revision=None, extension=".safetensors"):
|
||||
"""Get the safetensors filenames on the hub"""
|
||||
api = HfApi()
|
||||
info = api.model_info(model_id, revision=revision)
|
||||
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
|
||||
return filenames
|
||||
|
||||
|
||||
def try_to_load_from_cache(model_id, revision, filename):
|
||||
"""Try to load a file from the Hugging Face cache"""
|
||||
if revision is None:
|
||||
revision = "main"
|
||||
|
||||
object_id = model_id.replace("/", "--")
|
||||
repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"
|
||||
|
||||
if not repo_cache.is_dir():
|
||||
# No cache for this model
|
||||
return None
|
||||
|
||||
refs_dir = repo_cache / "refs"
|
||||
snapshots_dir = repo_cache / "snapshots"
|
||||
no_exist_dir = repo_cache / ".no_exist"
|
||||
|
||||
# Resolve refs (for instance to convert main to the associated commit sha)
|
||||
if refs_dir.is_dir():
|
||||
revision_file = refs_dir / revision
|
||||
if revision_file.exists():
|
||||
with revision_file.open() as f:
|
||||
revision = f.read()
|
||||
|
||||
# Check if file is cached as "no_exist"
|
||||
if (no_exist_dir / revision / filename).is_file():
|
||||
return _CACHED_NO_EXIST
|
||||
|
||||
# Check if revision folder exists
|
||||
if not snapshots_dir.exists():
|
||||
return None
|
||||
cached_shas = os.listdir(snapshots_dir)
|
||||
if revision not in cached_shas:
|
||||
# No cache for this revision and we won't try to return a random revision
|
||||
return None
|
||||
|
||||
# Check if file exists in cache
|
||||
cached_file = snapshots_dir / revision / filename
|
||||
return str(cached_file) if cached_file.is_file() else None
|
||||
|
||||
|
||||
def weight_files(model_id, revision=None, extension=".safetensors"):
|
||||
"""Get the local safetensors filenames"""
|
||||
if WEIGHTS_CACHE_OVERRIDE is not None:
|
||||
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
|
||||
|
||||
filenames = weight_hub_files(model_id, revision, extension)
|
||||
files = []
|
||||
for filename in filenames:
|
||||
cache_file = try_to_load_from_cache(
|
||||
model_id, revision=revision, filename=filename
|
||||
)
|
||||
if cache_file is None:
|
||||
raise LocalEntryNotFoundError(
|
||||
f"File {filename} of model {model_id} not found in "
|
||||
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
|
||||
f"Please run `text-generation-server download-weights {model_id}` first."
|
||||
)
|
||||
files.append(cache_file)
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def download_weights(model_id, revision=None, extension=".safetensors"):
|
||||
"""Download the safetensors files from the hub"""
|
||||
if WEIGHTS_CACHE_OVERRIDE is not None:
|
||||
return list(Path(WEIGHTS_CACHE_OVERRIDE).glob(f"*{extension}"))
|
||||
|
||||
filenames = weight_hub_files(model_id, revision, extension)
|
||||
|
||||
download_function = partial(
|
||||
hf_hub_download,
|
||||
repo_id=model_id,
|
||||
local_files_only=False,
|
||||
)
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=5)
|
||||
futures = [
|
||||
executor.submit(download_function, filename=filename, revision=revision)
|
||||
for filename in filenames
|
||||
]
|
||||
files = [
|
||||
future.result()
|
||||
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures))
|
||||
]
|
||||
|
||||
return files
|
|
@ -0,0 +1,36 @@
|
|||
from text_generation.utils.convert import convert_file, convert_files
|
||||
from text_generation.utils.dist import initialize_torch_distributed
|
||||
from text_generation.utils.hub import (
|
||||
weight_files,
|
||||
weight_hub_files,
|
||||
download_weights,
|
||||
EntryNotFoundError,
|
||||
LocalEntryNotFoundError,
|
||||
RevisionNotFoundError,
|
||||
)
|
||||
from text_generation.utils.tokens import (
|
||||
Greedy,
|
||||
NextTokenChooser,
|
||||
Sampling,
|
||||
StoppingCriteria,
|
||||
StopSequenceCriteria,
|
||||
FinishReason,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"convert_file",
|
||||
"convert_files",
|
||||
"initialize_torch_distributed",
|
||||
"weight_files",
|
||||
"weight_hub_files",
|
||||
"download_weights",
|
||||
"EntryNotFoundError",
|
||||
"LocalEntryNotFoundError",
|
||||
"RevisionNotFoundError",
|
||||
"Greedy",
|
||||
"NextTokenChooser",
|
||||
"Sampling",
|
||||
"StoppingCriteria",
|
||||
"StopSequenceCriteria",
|
||||
"FinishReason",
|
||||
]
|
|
@ -0,0 +1,96 @@
|
|||
import concurrent
|
||||
import time
|
||||
import torch
|
||||
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from collections import defaultdict
|
||||
from datetime import timedelta
|
||||
from loguru import logger
|
||||
from pathlib import Path
|
||||
from safetensors.torch import load_file, save_file
|
||||
from typing import Dict, List
|
||||
|
||||
|
||||
def check_file_size(source_file: Path, target_file: Path):
|
||||
"""
|
||||
Check that two files are close in size
|
||||
"""
|
||||
source_file_size = source_file.stat().st_size
|
||||
target_file_size = target_file.stat().st_size
|
||||
|
||||
if (source_file_size - target_file_size) / source_file_size > 0.01:
|
||||
raise RuntimeError(
|
||||
f"""The file size different is more than 1%:
|
||||
- {source_file}: {source_file_size}
|
||||
- {target_file}: {target_file_size}
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
def remove_shared_pointers(tensors: Dict[str, torch.Tensor]):
|
||||
"""
|
||||
For a Dict of tensors, check if two or more tensors point to the same underlying memory and
|
||||
remove them
|
||||
"""
|
||||
ptrs = defaultdict(list)
|
||||
for k, v in tensors.items():
|
||||
ptrs[v.data_ptr()].append(k)
|
||||
|
||||
# Iterate over all found memory addresses
|
||||
for ptr, names in ptrs.items():
|
||||
if len(names) > 1:
|
||||
# Multiple tensors are point to the same memory
|
||||
# Only keep the first tensor
|
||||
for name in names[1:]:
|
||||
tensors.pop(name)
|
||||
|
||||
|
||||
def convert_file(pt_file: Path, st_file: Path):
|
||||
"""
|
||||
Convert a pytorch file to a safetensors file
|
||||
"""
|
||||
pt_state = torch.load(pt_file, map_location="cpu")
|
||||
if "state_dict" in pt_state:
|
||||
pt_state = pt_state["state_dict"]
|
||||
|
||||
remove_shared_pointers(pt_state)
|
||||
|
||||
# Tensors need to be contiguous
|
||||
pt_state = {k: v.contiguous() for k, v in pt_state.items()}
|
||||
|
||||
st_file.parent.mkdir(parents=True, exist_ok=True)
|
||||
save_file(pt_state, str(st_file), metadata={"format": "pt"})
|
||||
|
||||
# Check that both files are close in size
|
||||
check_file_size(pt_file, st_file)
|
||||
|
||||
# Load safetensors state
|
||||
st_state = load_file(str(st_file))
|
||||
for k in st_state:
|
||||
pt_tensor = pt_state[k]
|
||||
st_tensor = st_state[k]
|
||||
if not torch.equal(pt_tensor, st_tensor):
|
||||
raise RuntimeError(f"The output tensors do not match for key {k}")
|
||||
|
||||
|
||||
def convert_files(pt_files: List[Path], st_files: List[Path]):
|
||||
assert len(pt_files) == len(st_files)
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=5)
|
||||
futures = [
|
||||
executor.submit(convert_file, pt_file=pt_file, st_file=st_file)
|
||||
for pt_file, st_file in zip(pt_files, st_files)
|
||||
]
|
||||
|
||||
# We do this instead of using tqdm because we want to parse the logs with the launcher
|
||||
logger.info("Converting weights...")
|
||||
start_time = time.time()
|
||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||
elapsed = timedelta(seconds=int(time.time() - start_time))
|
||||
remaining = len(futures) - (i + 1)
|
||||
if remaining != 0:
|
||||
eta = (elapsed / (i + 1)) * remaining
|
||||
else:
|
||||
eta = 0
|
||||
|
||||
logger.info(f"Convert: [{i + 1}/{len(futures)}] -- ETA: {eta}")
|
|
@ -0,0 +1,35 @@
|
|||
import os
|
||||
import torch
|
||||
|
||||
from datetime import timedelta
|
||||
|
||||
|
||||
def initialize_torch_distributed():
|
||||
rank = int(os.getenv("RANK", "0"))
|
||||
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
||||
|
||||
if torch.cuda.is_available():
|
||||
from torch.distributed import ProcessGroupNCCL
|
||||
|
||||
# Set the device id.
|
||||
assert world_size <= torch.cuda.device_count(), "Each process is one gpu"
|
||||
device = rank % torch.cuda.device_count()
|
||||
torch.cuda.set_device(device)
|
||||
backend = "nccl"
|
||||
options = ProcessGroupNCCL.Options()
|
||||
options.is_high_priority_stream = True
|
||||
options._timeout = timedelta(seconds=60)
|
||||
else:
|
||||
backend = "gloo"
|
||||
options = None
|
||||
|
||||
# Call the init process.
|
||||
torch.distributed.init_process_group(
|
||||
backend=backend,
|
||||
world_size=world_size,
|
||||
rank=rank,
|
||||
timeout=timedelta(seconds=60),
|
||||
pg_options=options,
|
||||
)
|
||||
|
||||
return torch.distributed.group.WORLD, rank, world_size
|
|
@ -0,0 +1,169 @@
|
|||
import time
|
||||
import concurrent
|
||||
import os
|
||||
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from datetime import timedelta
|
||||
from loguru import logger
|
||||
from pathlib import Path
|
||||
from typing import Optional, List
|
||||
|
||||
from huggingface_hub import HfApi, hf_hub_download
|
||||
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
||||
from huggingface_hub.utils import (
|
||||
LocalEntryNotFoundError,
|
||||
EntryNotFoundError,
|
||||
RevisionNotFoundError, # Import here to ease try/except in other part of the lib
|
||||
)
|
||||
|
||||
WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
|
||||
|
||||
|
||||
def weight_hub_files(
|
||||
model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
|
||||
) -> List[str]:
|
||||
"""Get the weights filenames on the hub"""
|
||||
api = HfApi()
|
||||
info = api.model_info(model_id, revision=revision)
|
||||
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
|
||||
|
||||
if not filenames:
|
||||
raise EntryNotFoundError(
|
||||
f"No {extension} weights found for model {model_id} and revision {revision}.",
|
||||
None,
|
||||
)
|
||||
|
||||
return filenames
|
||||
|
||||
|
||||
def try_to_load_from_cache(
|
||||
model_id: str, revision: Optional[str], filename: str
|
||||
) -> Optional[Path]:
|
||||
"""Try to load a file from the Hugging Face cache"""
|
||||
if revision is None:
|
||||
revision = "main"
|
||||
|
||||
object_id = model_id.replace("/", "--")
|
||||
repo_cache = Path(HUGGINGFACE_HUB_CACHE) / f"models--{object_id}"
|
||||
|
||||
if not repo_cache.is_dir():
|
||||
# No cache for this model
|
||||
return None
|
||||
|
||||
refs_dir = repo_cache / "refs"
|
||||
snapshots_dir = repo_cache / "snapshots"
|
||||
no_exist_dir = repo_cache / ".no_exist"
|
||||
|
||||
# Resolve refs (for instance to convert main to the associated commit sha)
|
||||
if refs_dir.is_dir():
|
||||
revision_file = refs_dir / revision
|
||||
if revision_file.exists():
|
||||
with revision_file.open() as f:
|
||||
revision = f.read()
|
||||
|
||||
# Check if file is cached as "no_exist"
|
||||
if (no_exist_dir / revision / filename).is_file():
|
||||
return None
|
||||
|
||||
# Check if revision folder exists
|
||||
if not snapshots_dir.exists():
|
||||
return None
|
||||
cached_shas = os.listdir(snapshots_dir)
|
||||
if revision not in cached_shas:
|
||||
# No cache for this revision and we won't try to return a random revision
|
||||
return None
|
||||
|
||||
# Check if file exists in cache
|
||||
cached_file = snapshots_dir / revision / filename
|
||||
return cached_file if cached_file.is_file() else None
|
||||
|
||||
|
||||
def weight_files(
|
||||
model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
|
||||
) -> List[Path]:
|
||||
"""Get the local files"""
|
||||
try:
|
||||
filenames = weight_hub_files(model_id, revision, extension)
|
||||
except EntryNotFoundError as e:
|
||||
if extension != ".safetensors":
|
||||
raise e
|
||||
# Try to see if there are pytorch weights
|
||||
pt_filenames = weight_hub_files(model_id, revision, extension=".bin")
|
||||
# Change pytorch extension to safetensors extension
|
||||
# It is possible that we have safetensors weights locally even though they are not on the
|
||||
# hub if we converted weights locally without pushing them
|
||||
filenames = [
|
||||
f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames
|
||||
]
|
||||
|
||||
if WEIGHTS_CACHE_OVERRIDE is not None:
|
||||
files = []
|
||||
for filename in filenames:
|
||||
p = Path(WEIGHTS_CACHE_OVERRIDE) / filename
|
||||
if not p.exists():
|
||||
raise LocalEntryNotFoundError(
|
||||
f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}."
|
||||
)
|
||||
files.append(p)
|
||||
return files
|
||||
|
||||
files = []
|
||||
for filename in filenames:
|
||||
cache_file = try_to_load_from_cache(
|
||||
model_id, revision=revision, filename=filename
|
||||
)
|
||||
if cache_file is None:
|
||||
raise LocalEntryNotFoundError(
|
||||
f"File {filename} of model {model_id} not found in "
|
||||
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
|
||||
f"Please run `text-generation-server download-weights {model_id}` first."
|
||||
)
|
||||
files.append(cache_file)
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def download_weights(
|
||||
filenames: List[str], model_id: str, revision: Optional[str] = None
|
||||
) -> List[Path]:
|
||||
"""Download the safetensors files from the hub"""
|
||||
|
||||
def download_file(filename):
|
||||
local_file = try_to_load_from_cache(model_id, revision, filename)
|
||||
if local_file is not None:
|
||||
logger.info(f"File {filename} already present in cache.")
|
||||
return local_file
|
||||
|
||||
start_time = time.time()
|
||||
local_file = hf_hub_download(
|
||||
filename=filename,
|
||||
repo_id=model_id,
|
||||
revision=revision,
|
||||
local_files_only=False,
|
||||
)
|
||||
logger.info(
|
||||
f"Downloaded {filename} at {local_file} in {timedelta(seconds=int(time.time() - start_time))}."
|
||||
)
|
||||
return local_file
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=5)
|
||||
futures = [
|
||||
executor.submit(download_file, filename=filename) for filename in filenames
|
||||
]
|
||||
|
||||
# We do this instead of using tqdm because we want to parse the logs with the launcher
|
||||
logger.info("Downloading weights...")
|
||||
start_time = time.time()
|
||||
files = []
|
||||
for i, future in enumerate(concurrent.futures.as_completed(futures)):
|
||||
elapsed = timedelta(seconds=int(time.time() - start_time))
|
||||
remaining = len(futures) - (i + 1)
|
||||
if remaining != 0:
|
||||
eta = (elapsed / (i + 1)) * remaining
|
||||
else:
|
||||
eta = 0
|
||||
|
||||
logger.info(f"Download: [{i + 1}/{len(futures)}] -- ETA: {eta}")
|
||||
files.append(Path(future.result()))
|
||||
|
||||
return [Path(p) for p in files]
|
|
@ -0,0 +1,142 @@
|
|||
import re
|
||||
import torch
|
||||
|
||||
from transformers import (
|
||||
LogitsProcessorList,
|
||||
TemperatureLogitsWarper,
|
||||
TopKLogitsWarper,
|
||||
TopPLogitsWarper,
|
||||
RepetitionPenaltyLogitsProcessor,
|
||||
PreTrainedTokenizerBase,
|
||||
)
|
||||
from typing import List, Tuple, Optional
|
||||
|
||||
from text_generation.pb import generate_pb2
|
||||
from text_generation.pb.generate_pb2 import FinishReason
|
||||
|
||||
|
||||
class Sampling:
|
||||
def __init__(self, seed: int, device: str = "cpu"):
|
||||
self.generator = torch.Generator(device)
|
||||
self.generator.manual_seed(seed)
|
||||
self.seed = seed
|
||||
|
||||
def __call__(self, logits):
|
||||
probs = torch.nn.functional.softmax(logits)
|
||||
next_tokens = torch.multinomial(probs, num_samples=1, generator=self.generator)
|
||||
return next_tokens
|
||||
|
||||
|
||||
class Greedy:
|
||||
def __call__(self, logits):
|
||||
return logits.argmax()
|
||||
|
||||
|
||||
class NextTokenChooser:
|
||||
def __init__(
|
||||
self,
|
||||
temperature=1.0,
|
||||
repetition_penalty=1.0,
|
||||
top_k=None,
|
||||
top_p=None,
|
||||
do_sample=False,
|
||||
seed=0,
|
||||
device="cpu",
|
||||
):
|
||||
warpers = LogitsProcessorList()
|
||||
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
||||
# all samplers can be found in `generation_utils_samplers.py`
|
||||
sampling = do_sample
|
||||
if temperature is not None and temperature != 1.0:
|
||||
temperature = float(temperature)
|
||||
warpers.append(TemperatureLogitsWarper(temperature))
|
||||
sampling = True
|
||||
if top_k is not None and top_k != 0:
|
||||
warpers.append(TopKLogitsWarper(top_k=top_k))
|
||||
sampling = True
|
||||
if top_p is not None and top_p < 1.0:
|
||||
warpers.append(TopPLogitsWarper(top_p=top_p))
|
||||
sampling = True
|
||||
if repetition_penalty is not None and repetition_penalty != 1.0:
|
||||
warpers.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
|
||||
|
||||
self.warpers = warpers
|
||||
self.choice = Sampling(seed, device) if sampling else Greedy()
|
||||
|
||||
def __call__(self, input_ids, scores):
|
||||
# Warp logits
|
||||
scores = self.warpers(input_ids, scores)
|
||||
|
||||
# Compute logprobs
|
||||
logprobs = torch.log_softmax(scores, -1)
|
||||
|
||||
# Choose tokens
|
||||
next_id = self.choice(scores[-1])
|
||||
|
||||
return next_id.view(1, 1), logprobs
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls, pb: generate_pb2.NextTokenChooserParameters, device: torch.device
|
||||
) -> "NextTokenChooser":
|
||||
return NextTokenChooser(
|
||||
temperature=pb.temperature,
|
||||
repetition_penalty=pb.repetition_penalty,
|
||||
top_k=pb.top_k,
|
||||
top_p=pb.top_p,
|
||||
do_sample=pb.do_sample,
|
||||
seed=pb.seed,
|
||||
device=device,
|
||||
)
|
||||
|
||||
|
||||
class StopSequenceCriteria:
|
||||
def __init__(self, stop_sequence: str):
|
||||
self.regex = re.compile(f".*{stop_sequence}$")
|
||||
|
||||
def __call__(self, output: str) -> bool:
|
||||
if self.regex.findall(output):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
class StoppingCriteria:
|
||||
def __init__(
|
||||
self,
|
||||
eos_token_id: int,
|
||||
stop_sequence_criterias: List[StopSequenceCriteria],
|
||||
max_new_tokens=20,
|
||||
):
|
||||
self.eos_token_id = eos_token_id
|
||||
self.stop_sequence_criterias = stop_sequence_criterias
|
||||
self.max_new_tokens = max_new_tokens
|
||||
self.current_tokens = 0
|
||||
self.current_output = ""
|
||||
|
||||
def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
|
||||
self.current_tokens += 1
|
||||
if self.current_tokens >= self.max_new_tokens:
|
||||
return True, FinishReason.FINISH_REASON_LENGTH
|
||||
|
||||
if last_token == self.eos_token_id:
|
||||
return True, FinishReason.FINISH_REASON_EOS_TOKEN
|
||||
|
||||
self.current_output += last_output
|
||||
for stop_sequence_criteria in self.stop_sequence_criterias:
|
||||
if stop_sequence_criteria(self.current_output):
|
||||
return True, FinishReason.FINISH_REASON_STOP_SEQUENCE
|
||||
|
||||
return False, None
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls,
|
||||
pb: generate_pb2.StoppingCriteriaParameters,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
) -> "StoppingCriteria":
|
||||
stop_sequence_criterias = [
|
||||
StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
|
||||
]
|
||||
return StoppingCriteria(
|
||||
tokenizer.eos_token_id, stop_sequence_criterias, pb.max_new_tokens
|
||||
)
|
Loading…
Reference in New Issue