fix: Update runners group
This commit is contained in:
parent
fc7dcb0ba6
commit
2980720af4
|
@ -21,7 +21,7 @@ jobs:
|
|||
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
runs-on:
|
||||
group: aws-g6-12xlarge-plus-priv
|
||||
group: aws-g6-12xl-plus-priv-cache
|
||||
env:
|
||||
DOCKER_VOLUME: /cache
|
||||
steps:
|
||||
|
@ -41,8 +41,10 @@ jobs:
|
|||
|
||||
- name: Run bench test
|
||||
run: |
|
||||
export PATH="$HOME/.local/bin:$PATH"
|
||||
cd load_tests
|
||||
python benchmarks.py
|
||||
poetry install
|
||||
poetry run python benchmarks.py
|
||||
shell: bash
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_TOKEN_BENCHMARK }}
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import json
|
||||
import os
|
||||
import traceback
|
||||
from typing import Dict, Tuple, List
|
||||
|
||||
import GPUtil
|
||||
import docker
|
||||
|
@ -13,7 +14,7 @@ class InferenceEngineRunner:
|
|||
def __init__(self, model: str):
|
||||
self.model = model
|
||||
|
||||
def run(self, parameters: list[tuple]):
|
||||
def run(self, parameters: list[tuple], gpus: int = 0):
|
||||
NotImplementedError("This method should be implemented by the subclass")
|
||||
|
||||
def stop(self):
|
||||
|
@ -32,7 +33,7 @@ class TGIDockerRunner(InferenceEngineRunner):
|
|||
self.image = image
|
||||
self.volumes = volumes
|
||||
|
||||
def run(self, parameters: list[tuple]):
|
||||
def run(self, parameters: list[tuple], gpus: int = 0):
|
||||
params = f"--model-id {self.model} --port 8080"
|
||||
for p in parameters:
|
||||
params += f" --{p[0]} {str(p[1])}"
|
||||
|
@ -43,7 +44,10 @@ class TGIDockerRunner(InferenceEngineRunner):
|
|||
self.container = run_docker(self.image, params,
|
||||
"Connected",
|
||||
"ERROR",
|
||||
volumes=volumes)
|
||||
volumes=volumes,
|
||||
gpus=gpus,
|
||||
ports={"8080/tcp": 8080}
|
||||
)
|
||||
|
||||
def stop(self):
|
||||
if self.container:
|
||||
|
@ -53,15 +57,15 @@ class TGIDockerRunner(InferenceEngineRunner):
|
|||
class BenchmarkRunner:
|
||||
def __init__(self,
|
||||
image: str = "ghcr.io/huggingface/text-generation-inference-benchmark:latest",
|
||||
volumes=None):
|
||||
volumes: List[Tuple[str, str]] = None):
|
||||
if volumes is None:
|
||||
volumes = []
|
||||
self.container = None
|
||||
self.image = image
|
||||
self.volumes = volumes
|
||||
|
||||
def run(self, parameters: list[tuple]):
|
||||
params = ""
|
||||
def run(self, parameters: list[tuple], network_mode):
|
||||
params = "text-generation-inference-benchmark"
|
||||
for p in parameters:
|
||||
params += f" --{p[0]} {str(p[1])}" if p[1] is not None else f" --{p[0]}"
|
||||
logger.info(f"Running text-generation-inference-benchmarks with parameters: {params}")
|
||||
|
@ -70,8 +74,11 @@ class BenchmarkRunner:
|
|||
volumes[v[0]] = {"bind": v[1], "mode": "rw"}
|
||||
self.container = run_docker(self.image, params,
|
||||
"Benchmark finished",
|
||||
"Error",
|
||||
volumes=volumes)
|
||||
"Fatal:",
|
||||
volumes=volumes,
|
||||
extra_env={"RUST_LOG": "text_generation_inference_benchmark=info",
|
||||
"RUST_BACKTRACE": "full"},
|
||||
network_mode=network_mode)
|
||||
|
||||
def stop(self):
|
||||
if self.container:
|
||||
|
@ -79,23 +86,31 @@ class BenchmarkRunner:
|
|||
|
||||
|
||||
def run_docker(image: str, args: str, success_sentinel: str,
|
||||
error_sentinel: str, volumes=None, gpus: int = 0) -> Container:
|
||||
error_sentinel: str, ports: Dict[str, int] = None, volumes=None, network_mode: str = "bridge",
|
||||
gpus: int = 0, extra_env: Dict[str, str] = None) -> Container:
|
||||
if ports is None:
|
||||
ports = {}
|
||||
if volumes is None:
|
||||
volumes = {}
|
||||
client = docker.from_env()
|
||||
if extra_env is None:
|
||||
extra_env = {}
|
||||
client = docker.from_env(timeout=300)
|
||||
# retrieve the GPU devices from CUDA_VISIBLE_DEVICES
|
||||
devices = [f"{i}" for i in
|
||||
range(get_num_gpus())][:gpus]
|
||||
environment = {"HF_TOKEN": os.environ.get("HF_TOKEN")}
|
||||
environment.update(extra_env)
|
||||
container = client.containers.run(image, args,
|
||||
detach=True,
|
||||
device_requests=[
|
||||
docker.types.DeviceRequest(device_ids=devices,
|
||||
capabilities=[['gpu']]) if gpus > 0 else None
|
||||
],
|
||||
capabilities=[['gpu']])
|
||||
] if gpus > 0 else None,
|
||||
volumes=volumes,
|
||||
shm_size="1g",
|
||||
ports={"8080/tcp": 8080},
|
||||
environment={"HF_TOKEN": os.environ.get("HF_TOKEN")}, )
|
||||
ports=ports,
|
||||
network_mode=network_mode,
|
||||
environment=environment, )
|
||||
for line in container.logs(stream=True):
|
||||
print(line.decode("utf-8"), end="")
|
||||
if success_sentinel.encode("utf-8") in line:
|
||||
|
@ -145,6 +160,8 @@ def build_df(model: str, data_files: dict[str, str]) -> pd.DataFrame:
|
|||
|
||||
def main():
|
||||
results_dir = 'results'
|
||||
# get absolute path
|
||||
results_dir = os.path.join(os.path.dirname(__file__), results_dir)
|
||||
logger.info('Starting benchmark')
|
||||
models = [
|
||||
('meta-llama/Llama-3.1-8B-Instruct', 1),
|
||||
|
@ -152,15 +169,17 @@ def main():
|
|||
# ('mistralai/Mixtral-8x7B-Instruct-v0.1', 2),
|
||||
]
|
||||
sha = os.environ.get('GITHUB_SHA')
|
||||
# create results directory
|
||||
os.makedirs(results_dir, exist_ok=True)
|
||||
success = True
|
||||
for model in models:
|
||||
tgi_runner = TGIDockerRunner(model[0])
|
||||
# create results directory
|
||||
model_dir = os.path.join(results_dir, f'{model[0].replace("/", "_").replace(".", "_")}')
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
runner = BenchmarkRunner(
|
||||
volumes=['results', '/opt/text-generation-inference-benchmark/results']
|
||||
volumes=[(model_dir, '/opt/text-generation-inference-benchmark/results')]
|
||||
)
|
||||
try:
|
||||
tgi_runner.run([('max-concurrent-requests', 512)])
|
||||
tgi_runner.run([('max-concurrent-requests', 512)], gpus=model[1])
|
||||
logger.info(f'TGI started for model {model[0]}')
|
||||
parameters = [
|
||||
('tokenizer-name', model[0]),
|
||||
|
@ -171,27 +190,38 @@ def main():
|
|||
('benchmark-kind', 'rate'),
|
||||
('prompt-options', 'num_tokens=200,max_tokens=220,min_tokens=180,variance=10'),
|
||||
('decode-options', 'num_tokens=200,max_tokens=220,min_tokens=180,variance=10'),
|
||||
('extra-meta', f'engine=TGI,tp={model[1]},version={sha},gpu={get_gpu_name()}'),
|
||||
('--no-console', None)
|
||||
('extra-meta', f'"engine=TGI,tp={model[1]},version={sha},gpu={get_gpu_name()}"'),
|
||||
('no-console', None)
|
||||
]
|
||||
runner.run(parameters)
|
||||
rates = [('rates', f'{r / 10.}') for r in list(range(8, 248, 8))]
|
||||
parameters.extend(rates)
|
||||
runner.run(parameters, f'container:{tgi_runner.container.id}')
|
||||
except Exception as e:
|
||||
logger.error(f'Error running benchmark for model {model[0]}: {e}')
|
||||
# print the stack trace
|
||||
print(traceback.format_exc())
|
||||
success = False
|
||||
finally:
|
||||
tgi_runner.stop()
|
||||
runner.stop()
|
||||
# list json files in results directory
|
||||
data_files = {}
|
||||
if not success:
|
||||
logger.error('Some benchmarks failed')
|
||||
exit(1)
|
||||
|
||||
df = pd.DataFrame()
|
||||
for filename in os.listdir(results_dir):
|
||||
if filename.endswith('.json'):
|
||||
data_files[filename.split('.')[-2]] = f'{results_dir}/{filename}'
|
||||
df = pd.concat([df, build_df(results_dir.split('/')[-1], data_files)])
|
||||
# list recursively directories
|
||||
directories = [f'{results_dir}/{d}' for d in os.listdir(results_dir) if os.path.isdir(f'{results_dir}/{d}')]
|
||||
logger.info(f'Found result directories: {directories}')
|
||||
for directory in directories:
|
||||
data_files = {}
|
||||
for filename in os.listdir(directory):
|
||||
if filename.endswith('.json'):
|
||||
data_files[filename.split('.')[-2]] = f'{directory}/{filename}'
|
||||
logger.info(f'Processing directory {directory}')
|
||||
df = pd.concat([df, build_df(directory.split('/')[-1], data_files)])
|
||||
df['device'] = get_gpu_name()
|
||||
df['error_rate'] = df['failed_requests'] / (df['failed_requests'] + df['successful_requests']) * 100.0
|
||||
df.to_parquet('s3://text-generation-inference-ci/benchmarks/ci/')
|
||||
df.to_parquet(f's3://text-generation-inference-ci/benchmarks/ci/{sha}.parquet')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue