Creating doc automatically for supported models. (#1929)

# What does this PR do?

<!--
Congratulations! You've made it this far! You're not quite done yet
though.

Once merged, your PR is going to appear in the release notes with the
title you set, so make sure it's a great title that fully reflects the
extent of your awesome contribution.

Then, please replace this with a description of the change and which
issue is fixed (if applicable). Please also include relevant motivation
and context. List any dependencies (if any) that are required for this
change.

Once you're done, someone will review your PR shortly (see the section
"Who can review?" below to tag some potential reviewers). They may
suggest changes to make the code even better. If no one reviewed your PR
after a week has passed, don't hesitate to post a new comment
@-mentioning the same persons---sometimes notifications get lost.
-->

<!-- Remove if not applicable -->

Fixes # (issue)


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Did you read the [contributor
guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the
[forum](https://discuss.huggingface.co/)? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
Here are the
[documentation
guidelines](https://github.com/huggingface/transformers/tree/main/docs),
and
[here are tips on formatting
docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation).
- [ ] Did you write any new necessary tests?


## Who can review?

Anyone in the community is free to review the PR once the tests have
passed. Feel free to tag
members/contributors who may be interested in your PR.

<!-- Your PR will be replied to more quickly if you can figure out the
right person to tag with @


@OlivierDehaene OR @Narsil

 -->
This commit is contained in:
Nicolas Patry 2024-05-22 16:22:57 +02:00 committed by GitHub
parent fc0eaffc81
commit 2f243a1a15
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 267 additions and 56 deletions

View File

@ -13,11 +13,7 @@ jobs:
- name: Install Launcher - name: Install Launcher
id: install-launcher id: install-launcher
env: run: cargo install --path launcher/
REF: ${{ github.head_ref }}
REPO: ${{ github.repository }}
run: cargo install --git "https://github.com/$REPO" --branch "$REF" text-generation-launcher
- name: Check launcher Docs are up-to-date - name: Check launcher Docs are up-to-date
run: | run: |
echo text-generation-launcher --help echo text-generation-launcher --help

View File

@ -1,30 +1,36 @@
# Supported Models and Hardware # Supported Models and Hardware
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported. Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
## Supported Models ## Supported Models
The following models are optimized and can be served with TGI, which uses custom CUDA kernels for better inference. You can add the flag `--disable-custom-kernels` at the end of the `docker run` command if you wish to disable them. - [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
- [BLOOM](https://huggingface.co/bigscience/bloom) - [Llama](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl) - [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
- [Galactica](https://huggingface.co/facebook/galactica-120b) - [Gemma](https://huggingface.co/google/gemma-7b)
- [GPT-2](https://huggingface.co/openai-community/gpt2) - [Cohere](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b) - [Dbrx](https://huggingface.co/databricks/dbrx-instruct)
- [Llama](https://github.com/facebookresearch/llama) - [Mamba](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)
- [OPT](https://huggingface.co/facebook/opt-66b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
- [Starcoder](https://huggingface.co/bigcode/starcoder)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
- [MPT](https://huggingface.co/mosaicml/mpt-30b)
- [Llama V2](https://huggingface.co/meta-llama)
- [Code Llama](https://huggingface.co/codellama)
- [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) - [Mistral](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
- [Mixtral](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) - [Mixtral](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)
- [Phi](https://huggingface.co/microsoft/phi-2) - [Gpt Bigcode](https://huggingface.co/bigcode/gpt_bigcode-santacoder)
- [Idefics](HuggingFaceM4/idefics-9b-instruct) (Multimodal) - [Phi](https://huggingface.co/microsoft/phi-1_5)
- [Llava-next](llava-hf/llava-v1.6-mistral-7b-hf) (Multimodal) - [Baichuan](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
- [Falcon](https://huggingface.co/tiiuae/falcon-7b-instruct)
- [StarCoder 2](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1)
- [Qwen 2](https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1)
- [Opt](https://huggingface.co/facebook/opt-6.7b)
- [T5](https://huggingface.co/google/flan-t5-xxl)
- [Galactica](https://huggingface.co/facebook/galactica-120b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
- [Bloom](https://huggingface.co/bigscience/bloom-560m)
- [Mpt](https://huggingface.co/mosaicml/mpt-7b-instruct)
- [Gpt2](https://huggingface.co/openai-community/gpt2)
- [Gpt Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Idefics](https://huggingface.co/HuggingFaceM4/idefics-9b) (Multimodal)
If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models: If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models:
@ -39,4 +45,4 @@ If you wish to serve a supported model that already exists on a local folder, ju
```bash ```bash
text-generation-launcher --model-id <PATH-TO-LOCAL-BLOOM> text-generation-launcher --model-id <PATH-TO-LOCAL-BLOOM>
`````` ```

View File

@ -1,4 +1,5 @@
import torch import torch
import enum
import os import os
from loguru import logger from loguru import logger
@ -116,6 +117,142 @@ if MAMBA_AVAILABLE:
__all__.append(Mamba) __all__.append(Mamba)
class ModelType(enum.Enum):
IDEFICS2 = {
"type": "idefics2",
"name": "Idefics 2",
"url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
"multimodal": True,
}
LLAVA_NEXT = {
"type": "llava_next",
"name": "Llava Next (1.6)",
"url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
"multimodal": True,
}
LLAMA = {
"type": "llama",
"name": "Llama",
"url": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
}
PHI3 = {
"type": "phi3",
"name": "Phi 3",
"url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
}
GEMMA = {
"type": "gemma",
"name": "Gemma",
"url": "https://huggingface.co/google/gemma-7b",
}
COHERE = {
"type": "cohere",
"name": "Cohere",
"url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
}
DBRX = {
"type": "dbrx",
"name": "Dbrx",
"url": "https://huggingface.co/databricks/dbrx-instruct",
}
MAMBA = {
"type": "ssm",
"name": "Mamba",
"url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
}
MISTRAL = {
"type": "mistral",
"name": "Mistral",
"url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
}
MIXTRAL = {
"type": "mixtral",
"name": "Mixtral",
"url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
}
GPT_BIGCODE = {
"type": "gpt_bigcode",
"name": "Gpt Bigcode",
"url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
}
PHI = {
"type": "phi",
"name": "Phi",
"url": "https://huggingface.co/microsoft/phi-1_5",
}
BAICHUAN = {
"type": "baichuan",
"name": "Baichuan",
"url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
}
FALCON = {
"type": "falcon",
"name": "Falcon",
"url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
}
STARCODER2 = {
"type": "starcoder2",
"name": "StarCoder 2",
"url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
}
QWEN2 = {
"type": "qwen2",
"name": "Qwen 2",
"url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
}
OPT = {
"type": "opt",
"name": "Opt",
"url": "https://huggingface.co/facebook/opt-6.7b",
}
T5 = {
"type": "t5",
"name": "T5",
"url": "https://huggingface.co/google/flan-t5-xxl",
}
GALACTICA = {
"type": "galactica",
"name": "Galactica",
"url": "https://huggingface.co/facebook/galactica-120b",
}
SANTACODER = {
"type": "santacoder",
"name": "SantaCoder",
"url": "https://huggingface.co/bigcode/santacoder",
}
BLOOM = {
"type": "bloom",
"name": "Bloom",
"url": "https://huggingface.co/bigscience/bloom-560m",
}
MPT = {
"type": "mpt",
"name": "Mpt",
"url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
}
GPT2 = {
"type": "gpt2",
"name": "Gpt2",
"url": "https://huggingface.co/openai-community/gpt2",
}
GPT_NEOX = {
"type": "gpt_neox",
"name": "Gpt Neox",
"url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
}
IDEFICS = {
"type": "idefics",
"name": "Idefics",
"url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
"multimodal": True,
}
__GLOBALS = locals()
for data in ModelType:
__GLOBALS[data.name] = data.value["type"]
def get_model( def get_model(
model_id: str, model_id: str,
revision: Optional[str], revision: Optional[str],
@ -267,7 +404,7 @@ def get_model(
else: else:
logger.info(f"Unknown quantization method {method}") logger.info(f"Unknown quantization method {method}")
if model_type == "ssm": if model_type == MAMBA:
return Mamba( return Mamba(
model_id, model_id,
revision, revision,
@ -288,8 +425,8 @@ def get_model(
) )
if ( if (
model_type == "gpt_bigcode" model_type == GPT_BIGCODE
or model_type == "gpt2" or model_type == GPT2
and model_id.startswith("bigcode/") and model_id.startswith("bigcode/")
): ):
if FLASH_ATTENTION: if FLASH_ATTENTION:
@ -315,7 +452,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "bloom": if model_type == BLOOM:
return BLOOMSharded( return BLOOMSharded(
model_id, model_id,
revision, revision,
@ -324,7 +461,7 @@ def get_model(
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
elif model_type == "mpt": elif model_type == MPT:
return MPTSharded( return MPTSharded(
model_id, model_id,
revision, revision,
@ -333,7 +470,7 @@ def get_model(
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
elif model_type == "gpt2": elif model_type == GPT2:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashGPT2( return FlashGPT2(
model_id, model_id,
@ -354,7 +491,7 @@ def get_model(
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
elif model_type == "gpt_neox": elif model_type == GPT_NEOX:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashNeoXSharded( return FlashNeoXSharded(
model_id, model_id,
@ -383,7 +520,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
elif model_type == "phi": elif model_type == PHI:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashPhi( return FlashPhi(
model_id, model_id,
@ -418,7 +555,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
elif model_type == "llama" or model_type == "baichuan" or model_type == "phi3": elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashLlama( return FlashLlama(
model_id, model_id,
@ -439,7 +576,7 @@ def get_model(
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "gemma": if model_type == GEMMA:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashGemma( return FlashGemma(
model_id, model_id,
@ -461,7 +598,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "cohere": if model_type == COHERE:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashCohere( return FlashCohere(
model_id, model_id,
@ -483,7 +620,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "dbrx": if model_type == DBRX:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashDbrx( return FlashDbrx(
model_id, model_id,
@ -505,7 +642,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type in ["RefinedWeb", "RefinedWebModel", "falcon"]: if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
if sharded: if sharded:
if FLASH_ATTENTION: if FLASH_ATTENTION:
if config_dict.get("alibi", False): if config_dict.get("alibi", False):
@ -539,7 +676,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "mistral": if model_type == MISTRAL:
sliding_window = config_dict.get("sliding_window", -1) sliding_window = config_dict.get("sliding_window", -1)
if ( if (
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION) ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
@ -566,7 +703,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "mixtral": if model_type == MIXTRAL:
sliding_window = config_dict.get("sliding_window", -1) sliding_window = config_dict.get("sliding_window", -1)
if ( if (
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION) ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
@ -593,7 +730,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "starcoder2": if model_type == STARCODER2:
sliding_window = config_dict.get("sliding_window", -1) sliding_window = config_dict.get("sliding_window", -1)
if ( if (
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION) ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
@ -621,7 +758,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "qwen2": if model_type == QWEN2:
sliding_window = config_dict.get("sliding_window", -1) sliding_window = config_dict.get("sliding_window", -1)
if ( if (
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION) ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
@ -647,7 +784,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "opt": if model_type == OPT:
return OPTSharded( return OPTSharded(
model_id, model_id,
revision, revision,
@ -657,7 +794,7 @@ def get_model(
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "t5": if model_type == T5:
return T5Sharded( return T5Sharded(
model_id, model_id,
revision, revision,
@ -666,7 +803,7 @@ def get_model(
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
if model_type == "idefics": if model_type == IDEFICS:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return IDEFICSSharded( return IDEFICSSharded(
model_id, model_id,
@ -678,7 +815,7 @@ def get_model(
) )
else: else:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
if model_type == "idefics2": if model_type == IDEFICS2:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return Idefics2( return Idefics2(
model_id, model_id,
@ -703,7 +840,7 @@ def get_model(
else: else:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics")) raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
if model_type == "llava_next": if model_type == LLAVA_NEXT:
if FLASH_ATTENTION: if FLASH_ATTENTION:
return LlavaNext( return LlavaNext(
model_id, model_id,

View File

@ -1,13 +1,34 @@
import subprocess import subprocess
import argparse import argparse
import ast
TEMPLATE = """
# Supported Models and Hardware
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models are hardware are supported.
## Supported Models
SUPPORTED_MODELS
If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models:
```python
# for causal LMs/text-generation models
AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
# or, for text-to-text generation models
AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")
```
If you wish to serve a supported model that already exists on a local folder, just point to the local folder.
```bash
text-generation-launcher --model-id <PATH-TO-LOCAL-BLOOM>
```
"""
def main(): def check_cli(check: bool):
parser = argparse.ArgumentParser()
parser.add_argument("--check", action="store_true")
args = parser.parse_args()
output = subprocess.check_output(["text-generation-launcher", "--help"]).decode( output = subprocess.check_output(["text-generation-launcher", "--help"]).decode(
"utf-8" "utf-8"
) )
@ -41,7 +62,7 @@ def main():
block = [] block = []
filename = "docs/source/basic_tutorials/launcher.md" filename = "docs/source/basic_tutorials/launcher.md"
if args.check: if check:
with open(filename, "r") as f: with open(filename, "r") as f:
doc = f.read() doc = f.read()
if doc != final_doc: if doc != final_doc:
@ -53,12 +74,63 @@ def main():
).stdout.decode("utf-8") ).stdout.decode("utf-8")
print(diff) print(diff)
raise Exception( raise Exception(
"Doc is not up-to-date, run `python update_doc.py` in order to update it" "Cli arguments Doc is not up-to-date, run `python update_doc.py` in order to update it"
) )
else: else:
with open(filename, "w") as f: with open(filename, "w") as f:
f.write(final_doc) f.write(final_doc)
def check_supported_models(check: bool):
filename = "server/text_generation_server/models/__init__.py"
with open(filename, "r") as f:
tree = ast.parse(f.read())
enum_def = [
x for x in tree.body if isinstance(x, ast.ClassDef) and x.name == "ModelType"
][0]
_locals = {}
_globals = {}
exec(f"import enum\n{ast.unparse(enum_def)}", _globals, _locals)
ModelType = _locals["ModelType"]
list_string = ""
for data in ModelType:
list_string += f"- [{data.value['name']}]({data.value['url']})"
if data.value.get("multimodal", None):
list_string += " (Multimodal)"
list_string += "\n"
final_doc = TEMPLATE.replace("SUPPORTED_MODELS", list_string)
filename = "docs/source/supported_models.md"
if check:
with open(filename, "r") as f:
doc = f.read()
if doc != final_doc:
tmp = "supported.md"
with open(tmp, "w") as g:
g.write(final_doc)
diff = subprocess.run(
["diff", tmp, filename], capture_output=True
).stdout.decode("utf-8")
print(diff)
raise Exception(
"Supported models is not up-to-date, run `python update_doc.py` in order to update it"
)
else:
with open(filename, "w") as f:
f.write(final_doc)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--check", action="store_true")
args = parser.parse_args()
check_cli(args.check)
check_supported_models(args.check)
if __name__ == "__main__": if __name__ == "__main__":
main() main()