Add: Support for the Falcon2 11B architecture (#1886)
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Add's support for the Falcon2 11B model architecture. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [x] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> --------- Signed-off-by: Raphael Glon <oOraph@users.noreply.github.com> Signed-off-by: Wang, Yi A <yi.a.wang@intel.com> Co-authored-by: OlivierDehaene <olivier@huggingface.co> Co-authored-by: Nicolas Patry <patry.nicolas@protonmail.com> Co-authored-by: oOraph <13552058+oOraph@users.noreply.github.com> Co-authored-by: Raphael Glon <oOraph@users.noreply.github.com> Co-authored-by: Julien Chaumond <julien@huggingface.co> Co-authored-by: OlivierDehaene <23298448+OlivierDehaene@users.noreply.github.com> Co-authored-by: abhishek thakur <1183441+abhishekkrthakur@users.noreply.github.com> Co-authored-by: Dong Shin <d0104.shin@gmail.com> Co-authored-by: Christof Weickhardt <christof@weickhardt.ch> Co-authored-by: Ikko Eltociear Ashimine <eltociear@gmail.com> Co-authored-by: drbh <david.richard.holtz@gmail.com> Co-authored-by: Lucain <lucain@huggingface.co> Co-authored-by: fxmarty <9808326+fxmarty@users.noreply.github.com> Co-authored-by: Moritz Laurer <41862082+MoritzLaurer@users.noreply.github.com> Co-authored-by: dr3s <dr3s@users.noreply.github.com> Co-authored-by: Wang, Yi <yi.a.wang@intel.com> Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Maziyar Panahi <maziyar.panahi@iscpif.fr> Co-authored-by: Brandon Royal <2762697+brandonroyal@users.noreply.github.com> Co-authored-by: Mishig <mishig.davaadorj@coloradocollege.edu> Co-authored-by: Martin Iglesias Goyanes <martinigoyanes@hotmail.com> Co-authored-by: martini <martin.iglesiasgoyanes@adyen.com>
This commit is contained in:
parent
d348d2b28f
commit
3136f27f36
|
@ -18,9 +18,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from typing import Optional, List, Tuple
|
||||
|
|
|
@ -1,26 +1,21 @@
|
|||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch import nn
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
|
||||
from text_generation_server.utils import paged_attention, flash_attn
|
||||
from text_generation_server.utils.flash_attn import attention
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
SpeculativeHead,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
SpeculativeHead,
|
||||
TensorParallelRowLinear,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastLayerNorm,
|
||||
)
|
||||
from text_generation_server.layers.rotary import (
|
||||
PositionRotaryEmbedding,
|
||||
)
|
||||
from text_generation_server.layers.layernorm import FastLayerNorm
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.utils import flash_attn, paged_attention
|
||||
|
||||
|
||||
def load_row(config, prefix: str, weights, bias: bool):
|
||||
|
@ -52,6 +47,7 @@ class RWConfig(PretrainedConfig):
|
|||
hidden_size=64,
|
||||
num_hidden_layers=None,
|
||||
num_attention_heads=None,
|
||||
num_ln_in_prallel_attention=None,
|
||||
layer_norm_epsilon=1e-5,
|
||||
initializer_range=0.02,
|
||||
use_cache=True,
|
||||
|
@ -65,6 +61,7 @@ class RWConfig(PretrainedConfig):
|
|||
new_decoder_architecture=None,
|
||||
bias=False,
|
||||
parallel_attn=False,
|
||||
rope_theta=10_000.0,
|
||||
**kwargs,
|
||||
):
|
||||
if alibi:
|
||||
|
@ -75,6 +72,7 @@ class RWConfig(PretrainedConfig):
|
|||
self.model_type = model_type
|
||||
self.alibi = False
|
||||
self.rotary = True
|
||||
self.rope_theta = rope_theta
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
# Backward compatibility with n_embed kwarg
|
||||
|
@ -91,6 +89,7 @@ class RWConfig(PretrainedConfig):
|
|||
else kwargs.pop("n_head", 8)
|
||||
)
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.num_ln_in_parallel_attention = num_ln_in_prallel_attention
|
||||
self.initializer_range = initializer_range
|
||||
self.use_cache = use_cache
|
||||
self.hidden_dropout = hidden_dropout
|
||||
|
@ -132,9 +131,13 @@ class FlashRWAttention(torch.nn.Module):
|
|||
self.num_heads_kv = config.n_head_kv
|
||||
self.hidden_size = config.hidden_size
|
||||
self.head_size = self.hidden_size // self.num_heads
|
||||
self.rope_theta = config.rope_theta
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config, dim=self.head_size, base=10000.0, device=weights.device
|
||||
config=config,
|
||||
dim=self.head_size,
|
||||
base=self.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
|
||||
|
@ -244,9 +247,13 @@ class FlashRWLargeAttention(torch.nn.Module):
|
|||
self.hidden_size = hidden_size
|
||||
self.head_size = hidden_size // num_heads
|
||||
self.num_groups = num_groups
|
||||
self.rope_theta = config.rope_theta
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config, dim=self.head_size, base=10000.0, device=weights.device
|
||||
config=config,
|
||||
dim=self.head_size,
|
||||
base=self.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
|
||||
|
@ -257,7 +264,7 @@ class FlashRWLargeAttention(torch.nn.Module):
|
|||
|
||||
if process_group.size() > self.num_groups:
|
||||
raise NotImplementedError(
|
||||
f"Tensor Parallelism is not implemented for world_size > n groups"
|
||||
"Tensor Parallelism is not implemented for world_size > n groups"
|
||||
)
|
||||
if self.num_groups % process_group.size() != 0:
|
||||
raise NotImplementedError(
|
||||
|
@ -459,6 +466,7 @@ class FlashRWLayer(nn.Module):
|
|||
max_s,
|
||||
)
|
||||
|
||||
if self.post_attention_layernorm is not None:
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual
|
||||
)
|
||||
|
@ -468,10 +476,18 @@ class FlashRWLayer(nn.Module):
|
|||
return mlp_output, residual
|
||||
|
||||
|
||||
class FlashRWLargeLayer(nn.Module):
|
||||
def __init__(self, layer_id, config, weights):
|
||||
class FlashRWLayerNorm(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
prefix = f"transformer.h.{layer_id}"
|
||||
self.num_ln = config.num_ln_in_parallel_attn
|
||||
|
||||
if self.num_ln == 1:
|
||||
self.input_ln = FastLayerNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm",
|
||||
weights=weights,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
elif self.num_ln == 2:
|
||||
self.ln_attn = FastLayerNorm.load(
|
||||
prefix=f"{prefix}.ln_attn",
|
||||
weights=weights,
|
||||
|
@ -482,6 +498,29 @@ class FlashRWLargeLayer(nn.Module):
|
|||
weights=weights,
|
||||
eps=config.layer_norm_epsilon,
|
||||
)
|
||||
else:
|
||||
raise ValueError("Number of layer norms can either be 1 or 2.")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
):
|
||||
if self.num_ln == 1:
|
||||
ln_hidden_states, residual = self.input_ln(hidden_states, residual)
|
||||
return ln_hidden_states, ln_hidden_states, residual
|
||||
elif self.num_ln == 2:
|
||||
ln_attn, residual = self.ln_attn(hidden_states, residual)
|
||||
ln_mlp, _ = self.ln_mlp(residual)
|
||||
return ln_attn, ln_mlp, residual
|
||||
|
||||
|
||||
class FlashRWLargeLayer(nn.Module):
|
||||
def __init__(self, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"transformer.h.{layer_id}"
|
||||
|
||||
self.ln_layer = FlashRWLayerNorm(config, prefix, weights)
|
||||
|
||||
self.self_attention = FlashRWLargeAttention(
|
||||
config,
|
||||
|
@ -507,8 +546,8 @@ class FlashRWLargeLayer(nn.Module):
|
|||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
ln_attn, residual = self.ln_attn(hidden_states, residual)
|
||||
ln_mlp, _ = self.ln_mlp(residual)
|
||||
# Layer norm.
|
||||
ln_attn, ln_mlp, residual = self.ln_layer(hidden_states, residual)
|
||||
|
||||
# Self attention.
|
||||
attn_output = self.self_attention(
|
||||
|
|
Loading…
Reference in New Issue