feat: boilerplate phi2 model integration
This commit is contained in:
parent
91d7267534
commit
31b23f98ff
|
@ -18,6 +18,7 @@ from text_generation_server.models.galactica import GalacticaSharded
|
|||
from text_generation_server.models.santacoder import SantaCoder
|
||||
from text_generation_server.models.t5 import T5Sharded
|
||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
from text_generation_server.models.phi2 import Phi2
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
|
@ -40,6 +41,7 @@ __all__ = [
|
|||
"OPTSharded",
|
||||
"T5Sharded",
|
||||
"get_model",
|
||||
"Phi2",
|
||||
]
|
||||
|
||||
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
|
||||
|
@ -201,6 +203,14 @@ def get_model(
|
|||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == "phi-msft":
|
||||
return Phi2(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
elif model_type == "gpt_neox":
|
||||
if FLASH_ATTENTION:
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.distributed
|
||||
|
||||
from typing import Optional, List, Tuple, Type
|
||||
from text_generation_server.models.types import Generation, Tokens
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerBase, AutoModelForCausalLM
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.pb import generate_pb2
|
||||
|
||||
class Phi2(CausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
if quantize:
|
||||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
with device:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
torch_dtype=dtype,
|
||||
load_in_8bit=quantize == "bitsandbytes",
|
||||
trust_remote_code=trust_remote_code
|
||||
)
|
||||
|
||||
# debug show the model
|
||||
print(model)
|
||||
|
||||
super(CausalLM, self).__init__(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def decode(self, generated_ids: List[int]) -> str:
|
||||
print("🔍 Decoding", generated_ids.shape)
|
||||
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
):
|
||||
print("🔥 Forwarding", input_ids.shape)
|
||||
default = super().forward(input_ids, attention_mask, position_ids, past_key_values)
|
||||
return default
|
||||
|
||||
|
||||
def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], CausalLMBatch | None, Tuple[int, int]]:
|
||||
print("🛥️ Generating Tokens")
|
||||
default = super().generate_token(batch)
|
||||
return default
|
Loading…
Reference in New Issue