feat: boilerplate phi2 model integration

This commit is contained in:
drbh 2024-01-10 09:42:26 -05:00
parent 91d7267534
commit 31b23f98ff
2 changed files with 86 additions and 0 deletions

View File

@ -18,6 +18,7 @@ from text_generation_server.models.galactica import GalacticaSharded
from text_generation_server.models.santacoder import SantaCoder
from text_generation_server.models.t5 import T5Sharded
from text_generation_server.models.gpt_neox import GPTNeoxSharded
from text_generation_server.models.phi2 import Phi2
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
@ -40,6 +41,7 @@ __all__ = [
"OPTSharded",
"T5Sharded",
"get_model",
"Phi2",
]
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
@ -201,6 +203,14 @@ def get_model(
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif model_type == "phi-msft":
return Phi2(
model_id,
revision,
quantize=quantize,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif model_type == "gpt_neox":
if FLASH_ATTENTION:

View File

@ -0,0 +1,76 @@
import torch
import torch.nn as nn
import torch.distributed
from typing import Optional, List, Tuple, Type
from text_generation_server.models.types import Generation, Tokens
from text_generation_server.models.causal_lm import CausalLMBatch
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerBase, AutoModelForCausalLM
from text_generation_server.models import CausalLM
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.pb import generate_pb2
class Phi2(CausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16 if dtype is None else dtype
else:
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32 if dtype is None else dtype
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
)
tokenizer.pad_token = tokenizer.eos_token
with device:
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=dtype,
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code
)
# debug show the model
print(model)
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
)
def decode(self, generated_ids: List[int]) -> str:
print("🔍 Decoding", generated_ids.shape)
# Do not skip special tokens as they are used for custom parsing rules of the generated text
return self.tokenizer.decode(
generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
):
print("🔥 Forwarding", input_ids.shape)
default = super().forward(input_ids, attention_mask, position_ids, past_key_values)
return default
def generate_token(self, batch: CausalLMBatch) -> Tuple[List[Generation], CausalLMBatch | None, Tuple[int, int]]:
print("🛥️ Generating Tokens")
default = super().generate_token(batch)
return default