Handle GPTQ-Marlin loading in `GPTQMarlinWeightLoader` (#2300)

The `GPTWeightLoader` was structured like this in pseudocode:

if marlin:
  Set up tensors in a way that GPTQ-Marlin expects
else:
  Set up tensors in a way that ExLlama/GPTQ/AWQ expect

However, the GPT-Marlin implementation details should really be in the
`marlin` module. So move the former part out to a separate
`GPTQMarlinWeightsLoader`.
This commit is contained in:
Daniël de Kok 2024-07-31 13:08:41 +02:00 committed by GitHub
parent 2b19d671b4
commit 34f7dcfd80
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 224 additions and 179 deletions

View File

@ -124,50 +124,7 @@ class GPTQWeightsLoader(WeightsLoader):
self.sym = sym self.sym = sym
def get_weights(self, weights: Weights, prefix: str): def get_weights(self, weights: Weights, prefix: str):
from text_generation_server.layers.marlin import (
can_use_gptq_marlin,
repack_gptq_for_marlin,
)
self._get_gptq_params(weights) self._get_gptq_params(weights)
if can_use_gptq_marlin(
bits=self.bits,
groupsize=self.groupsize,
quant_method=self.quant_method,
quantize=self.quantize,
sym=self.sym,
):
log_once(logger.info, "Using GPTQ-Marlin kernels")
try:
qweight = weights.get_tensor(f"{prefix}.qweight")
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
)
if not self.sym:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_tensor(f"{prefix}.g_idx")
scales = weights.get_tensor(f"{prefix}.scales")
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
use_exllama = True use_exllama = True
if self.bits != 4: if self.bits != 4:
@ -248,11 +205,6 @@ class GPTQWeightsLoader(WeightsLoader):
prefix: str, prefix: str,
block_sizes: Union[int, List[int]], block_sizes: Union[int, List[int]],
): ):
from text_generation_server.layers.marlin import (
can_use_gptq_marlin,
repack_gptq_for_marlin,
)
try: try:
qweight = weights.get_packed_sharded( qweight = weights.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes f"{prefix}.qweight", dim=1, block_sizes=block_sizes
@ -267,36 +219,6 @@ class GPTQWeightsLoader(WeightsLoader):
scales = scales.to(dtype=weights.dtype) scales = scales.to(dtype=weights.dtype)
self._get_gptq_params(weights) self._get_gptq_params(weights)
if can_use_gptq_marlin(
bits=self.bits,
groupsize=self.groupsize,
quant_method=self.quant_method,
quantize=self.quantize,
sym=self.sym,
):
if not self.sym:
qzeros = weights.get_packed_sharded(
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_tensor(f"{prefix}.g_idx")
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
qzeros = weights.get_packed_sharded( qzeros = weights.get_packed_sharded(
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
@ -334,11 +256,6 @@ class GPTQWeightsLoader(WeightsLoader):
) )
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int): def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
from text_generation_server.layers.marlin import (
can_use_gptq_marlin,
repack_gptq_for_marlin,
)
try: try:
qweight = torch.cat( qweight = torch.cat(
[weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1 [weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
@ -353,41 +270,6 @@ class GPTQWeightsLoader(WeightsLoader):
) )
self._get_gptq_params(weights) self._get_gptq_params(weights)
if can_use_gptq_marlin(
bits=self.bits,
groupsize=self.groupsize,
quant_method=self.quant_method,
quantize=self.quantize,
sym=self.sym,
):
if not self.sym:
qzeros = torch.cat(
[weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
for w2 in w[1:]:
torch.testing.assert_close(w2, w[0])
g_idx = w[0]
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
qzeros = torch.cat( qzeros = torch.cat(
[weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1 [weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
@ -441,59 +323,7 @@ class GPTQWeightsLoader(WeightsLoader):
) )
def get_weights_row(self, weights: Weights, prefix: str): def get_weights_row(self, weights: Weights, prefix: str):
from text_generation_server.layers.marlin import (
can_use_gptq_marlin,
repack_gptq_for_marlin,
)
self._get_gptq_params(weights) self._get_gptq_params(weights)
if can_use_gptq_marlin(
bits=self.bits,
groupsize=self.groupsize,
quant_method=self.quant_method,
quantize=self.quantize,
sym=self.sym,
):
log_once(logger.info, "Using GPTQ-Marlin kernels")
try:
qweight = weights.get_sharded(f"{prefix}.qweight", dim=0)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
)
if not self.sym:
if self.desc_act or self.groupsize == -1:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
else:
qzeros = weights.get_sharded(f"{prefix}.qzeros", dim=0)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_sharded(f"{prefix}.g_idx", dim=0)
if self.desc_act or self.groupsize == -1:
scales = weights.get_tensor(f"{prefix}.scales")
else:
scales = weights.get_sharded(f"{prefix}.scales", dim=0)
sharded_in_features = weights.process_group.size() > 1
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=sharded_in_features,
)
use_exllama = True use_exllama = True
if self.bits != 4: if self.bits != 4:

View File

@ -1,7 +1,6 @@
from text_generation_server.layers.marlin.fp8 import GPTQMarlinFP8Linear from text_generation_server.layers.marlin.fp8 import GPTQMarlinFP8Linear
from text_generation_server.layers.marlin.gptq import ( from text_generation_server.layers.marlin.gptq import (
GPTQMarlinLinear, GPTQMarlinWeightsLoader,
GPTQMarlinWeight,
can_use_gptq_marlin, can_use_gptq_marlin,
repack_gptq_for_marlin, repack_gptq_for_marlin,
) )
@ -9,8 +8,7 @@ from text_generation_server.layers.marlin.marlin import MarlinWeightsLoader
__all__ = [ __all__ = [
"GPTQMarlinFP8Linear", "GPTQMarlinFP8Linear",
"GPTQMarlinLinear", "GPTQMarlinWeightsLoader",
"GPTQMarlinWeight",
"MarlinWeightsLoader", "MarlinWeightsLoader",
"can_use_gptq_marlin", "can_use_gptq_marlin",
"repack_gptq_for_marlin", "repack_gptq_for_marlin",

View File

@ -1,5 +1,5 @@
from dataclasses import dataclass from dataclasses import dataclass
from typing import Optional from typing import List, Optional, Union
import numpy import numpy
import torch import torch
@ -13,7 +13,7 @@ from text_generation_server.layers.marlin.util import (
) )
from text_generation_server.utils.import_utils import SYSTEM from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.log import log_once from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
try: try:
import marlin_kernels import marlin_kernels
@ -48,6 +48,204 @@ def can_use_gptq_marlin(
) )
class GPTQMarlinWeightsLoader(WeightsLoader):
"""
Loader for using GPTQ- and AWQ-quantized weights with Marlin kernels.
"""
def __init__(
self,
*,
bits: int,
desc_act: bool,
groupsize: int,
quant_method: str,
quantize: str,
sym: bool,
):
self.bits = bits
self.desc_act = desc_act
self.groupsize = groupsize
self.quant_method = quant_method
self.quantize = quantize
self.sym = sym
def get_weights(self, weights: Weights, prefix: str):
log_once(logger.info, "Using GPTQ-Marlin kernels")
try:
qweight = weights.get_tensor(f"{prefix}.qweight")
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
)
if not self.sym:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_tensor(f"{prefix}.g_idx")
scales = weights.get_tensor(f"{prefix}.scales")
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
def get_weights_col_packed(
self,
weights: Weights,
prefix: str,
block_sizes: Union[int, List[int]],
):
try:
qweight = weights.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized."
)
scales = weights.get_packed_sharded(
f"{prefix}.scales", dim=1, block_sizes=block_sizes
)
scales = scales.to(dtype=weights.dtype)
if not self.sym:
qzeros = weights.get_packed_sharded(
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_tensor(f"{prefix}.g_idx")
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
try:
qweight = torch.cat(
[weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized"
)
scales = torch.cat(
[weights.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
)
if not self.sym:
qzeros = torch.cat(
[weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
for w2 in w[1:]:
torch.testing.assert_close(w2, w[0])
g_idx = w[0]
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=False,
)
def get_weights_row(self, weights: Weights, prefix: str):
log_once(logger.info, "Using GPTQ-Marlin kernels")
try:
qweight = weights.get_sharded(f"{prefix}.qweight", dim=0)
except RuntimeError:
raise RuntimeError(
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
)
if not self.sym:
if self.desc_act or self.groupsize == -1:
qzeros = weights.get_tensor(f"{prefix}.qzeros")
else:
qzeros = weights.get_sharded(f"{prefix}.qzeros", dim=0)
else:
qzeros = None
if self.quant_method == "awq":
g_idx = None
else:
g_idx = weights.get_sharded(f"{prefix}.g_idx", dim=0)
if self.desc_act or self.groupsize == -1:
scales = weights.get_tensor(f"{prefix}.scales")
else:
scales = weights.get_sharded(f"{prefix}.scales", dim=0)
sharded_in_features = weights.process_group.size() > 1
return repack_gptq_for_marlin(
qweight=qweight,
scales=scales,
qzeros=qzeros,
g_idx=g_idx,
bits=self.bits,
desc_act=self.desc_act,
groupsize=self.groupsize,
quant_method=self.quant_method,
sym=self.sym,
sharded_infeatures=sharded_in_features,
)
def _get_gptq_params(self, weights: Weights):
if weights._has_tensor("gptq_bits") and weights._has_tensor("gptq_groupsize"):
self.bits = weights.get_tensor("gptq_bits").item()
self.groupsize = weights.get_tensor("gptq_groupsize").item()
self.desc_act = False
# `server quantize` used asymmetric quantization unconditionally
# before the `gptq_sym` setting tensor was added.
self.sym = (
weights.get_tensor("gptq_sym").item()
if weights._has_tensor("gptq_sym")
else False
)
self.quant_method = "gptq"
@dataclass @dataclass
class GPTQMarlinWeight(Weight): class GPTQMarlinWeight(Weight):
""" """

View File

@ -4,6 +4,7 @@ from dataclasses import dataclass
from typing import Optional from typing import Optional
from huggingface_hub import hf_hub_download from huggingface_hub import hf_hub_download
from text_generation_server.layers.marlin.gptq import can_use_gptq_marlin
from text_generation_server.utils.weights import ( from text_generation_server.utils.weights import (
DefaultWeightsLoader, DefaultWeightsLoader,
WeightsLoader, WeightsLoader,
@ -128,14 +129,32 @@ def get_loader(
f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config." f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config."
) )
return GPTQWeightsLoader( if can_use_gptq_marlin(
bits=quantizer_config.bits, bits=quantizer_config.bits,
desc_act=quantizer_config.desc_act,
groupsize=quantizer_config.groupsize, groupsize=quantizer_config.groupsize,
quant_method=quantizer_config.quant_method, quant_method=quantizer_config.quant_method,
quantize=quantize, quantize=quantize,
sym=quantizer_config.sym, sym=quantizer_config.sym,
) ):
from text_generation_server.layers.marlin import GPTQMarlinWeightsLoader
return GPTQMarlinWeightsLoader(
bits=quantizer_config.bits,
desc_act=quantizer_config.desc_act,
groupsize=quantizer_config.groupsize,
quant_method=quantizer_config.quant_method,
quantize=quantize,
sym=quantizer_config.sym,
)
else:
return GPTQWeightsLoader(
bits=quantizer_config.bits,
desc_act=quantizer_config.desc_act,
groupsize=quantizer_config.groupsize,
quant_method=quantizer_config.quant_method,
quantize=quantize,
sym=quantizer_config.sym,
)
elif quantize == "bitsandbytes": elif quantize == "bitsandbytes":
from text_generation_server.layers.bnb import BNBWeight from text_generation_server.layers.bnb import BNBWeight