feat: mixtral (#1328)
This commit is contained in:
parent
9ecfa16b12
commit
3a521c92b3
|
@ -154,6 +154,11 @@ COPY server/Makefile-vllm Makefile
|
|||
# Build specific version of vllm
|
||||
RUN make build-vllm-cuda
|
||||
|
||||
# Build megablocks
|
||||
FROM kernel-builder as megablocks-builder
|
||||
|
||||
RUN pip install git+https://github.com/OlivierDehaene/megablocks@181709df192de9a941fdf3a641cdc65a0462996e
|
||||
|
||||
# Text Generation Inference base image
|
||||
FROM nvidia/cuda:12.1.0-base-ubuntu20.04 as base
|
||||
|
||||
|
@ -175,8 +180,8 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-ins
|
|||
curl \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy conda with PyTorch installed
|
||||
COPY --from=pytorch-install /opt/conda /opt/conda
|
||||
# Copy conda with PyTorch and Megablocks installed
|
||||
COPY --from=megablocks-builder /opt/conda /opt/conda
|
||||
|
||||
# Copy build artifacts from flash attention builder
|
||||
COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
||||
|
|
|
@ -629,6 +629,9 @@ pub async fn run(
|
|||
// Batch size buckets
|
||||
let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
|
||||
let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
|
||||
// Speculated tokens buckets
|
||||
let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
|
||||
let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
|
||||
|
||||
// Prometheus handler
|
||||
let builder = PrometheusBuilder::new()
|
||||
|
@ -641,6 +644,8 @@ pub async fn run(
|
|||
.set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
|
||||
.unwrap()
|
||||
.set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
|
||||
.unwrap()
|
||||
.set_buckets_for_metric(skipped_matcher, &skipped_buckets)
|
||||
.unwrap();
|
||||
let prom_handle = builder
|
||||
.install_recorder()
|
||||
|
|
|
@ -16,6 +16,9 @@ gen-server:
|
|||
find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
|
||||
touch text_generation_server/pb/__init__.py
|
||||
|
||||
install-megablocks:
|
||||
pip install git+https://github.com/OlivierDehaene/megablocks@181709df192de9a941fdf3a641cdc65a0462996e
|
||||
|
||||
install: gen-server
|
||||
pip install pip --upgrade
|
||||
pip install -r requirements_cuda.txt
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import os
|
||||
import torch
|
||||
|
||||
from loguru import logger
|
||||
|
@ -78,6 +77,18 @@ except ImportError as e:
|
|||
if MISTRAL:
|
||||
__all__.append(FlashMistral)
|
||||
|
||||
MIXTRAL = True
|
||||
try:
|
||||
from text_generation_server.models.flash_mixtral import FlashMixtral
|
||||
except ImportError as e:
|
||||
logger.warning(f"Could not import Mixtral model: {e}")
|
||||
MIXTRAL = False
|
||||
|
||||
if MIXTRAL:
|
||||
__all__.append(FlashMixtral)
|
||||
|
||||
|
||||
|
||||
def get_model(
|
||||
model_id: str,
|
||||
revision: Optional[str],
|
||||
|
@ -141,7 +152,6 @@ def get_model(
|
|||
use_medusa = None
|
||||
if "medusa_num_heads" in config_dict:
|
||||
use_medusa = model_id
|
||||
medusa_config = config_dict
|
||||
model_id = config_dict["base_model_name_or_path"]
|
||||
revision = "main"
|
||||
speculate_medusa = config_dict["medusa_num_heads"]
|
||||
|
@ -292,7 +302,18 @@ def get_model(
|
|||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
raise NotImplementedError("Mistral model requires flash attention v2")
|
||||
raise NotImplementedError("Mistral models requires flash attention v2")
|
||||
|
||||
if model_type == "mixtral":
|
||||
if MIXTRAL:
|
||||
return FlashMixtral(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
raise NotImplementedError("Mixtral models requires flash attention v2, stk and megablocks")
|
||||
|
||||
if model_type == "opt":
|
||||
return OPTSharded(
|
||||
|
|
|
@ -34,14 +34,8 @@ from text_generation_server.utils.layers import (
|
|||
PositionRotaryEmbedding,
|
||||
TensorParallelHead,
|
||||
get_linear,
|
||||
FastRMSNorm
|
||||
)
|
||||
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
|
||||
|
||||
if IS_CUDA_SYSTEM:
|
||||
import dropout_layer_norm
|
||||
elif IS_ROCM_SYSTEM:
|
||||
from vllm import layernorm_ops
|
||||
|
||||
|
||||
class LlamaConfig(PretrainedConfig):
|
||||
def __init__(
|
||||
|
@ -95,75 +89,6 @@ class LlamaConfig(PretrainedConfig):
|
|||
)
|
||||
|
||||
|
||||
class LlamaRMSNorm(nn.Module):
|
||||
def __init__(self, prefix, weights, eps=1e-6):
|
||||
"""
|
||||
LlamaRMSNorm is equivalent to T5LayerNorm
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
weight = weights.get_tensor(f"{prefix}.weight")
|
||||
self.weight = nn.Parameter(weight)
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
|
||||
return self.weight * hidden_states, residual
|
||||
elif IS_CUDA_SYSTEM:
|
||||
# faster post attention rms norm
|
||||
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.variance_epsilon,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
True, # Activate RMSNorm
|
||||
)
|
||||
if res is None:
|
||||
res = hidden_states
|
||||
|
||||
return normed_hidden_states, res
|
||||
elif IS_ROCM_SYSTEM:
|
||||
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
out = torch.empty_like(hidden_states)
|
||||
layernorm_ops.rms_norm(
|
||||
out,
|
||||
hidden_states,
|
||||
self.weight.data,
|
||||
self.variance_epsilon,
|
||||
)
|
||||
return out, residual
|
||||
else:
|
||||
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
|
||||
|
||||
|
||||
def load_attention(config, prefix, weights):
|
||||
if config.num_attention_heads != config.num_key_value_heads:
|
||||
return _load_gqa(config, prefix, weights)
|
||||
|
@ -363,10 +288,8 @@ class FlashLlamaLayer(nn.Module):
|
|||
)
|
||||
self.mlp = LlamaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
||||
|
||||
self.input_layernorm = LlamaRMSNorm(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = LlamaRMSNorm(
|
||||
self.input_layernorm = FastRMSNorm.load(prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
|
@ -430,7 +353,7 @@ class FlashLlamaModel(torch.nn.Module):
|
|||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = LlamaRMSNorm(
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix="model.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
|
|
|
@ -35,13 +35,9 @@ from text_generation_server.utils.layers import (
|
|||
PositionRotaryEmbedding,
|
||||
TensorParallelHead,
|
||||
get_linear,
|
||||
FastRMSNorm
|
||||
)
|
||||
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
|
||||
|
||||
if IS_CUDA_SYSTEM:
|
||||
import dropout_layer_norm
|
||||
elif IS_ROCM_SYSTEM:
|
||||
from vllm import layernorm_ops
|
||||
|
||||
if not HAS_FLASH_ATTN_V2_CUDA and not HAS_FLASH_ATTN_V2_ROCM:
|
||||
raise ImportError("Mistral model requires flash attn v2")
|
||||
|
@ -100,76 +96,6 @@ class MistralConfig(PretrainedConfig):
|
|||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class MistralRMSNorm(nn.Module):
|
||||
def __init__(self, prefix, weights, eps=1e-6):
|
||||
"""
|
||||
LlamaRMSNorm is equivalent to T5LayerNorm
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
weight = weights.get_tensor(f"{prefix}.weight")
|
||||
self.weight = nn.Parameter(weight)
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
|
||||
return self.weight * hidden_states, residual
|
||||
elif IS_CUDA_SYSTEM:
|
||||
# faster post attention rms norm
|
||||
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.variance_epsilon,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
True, # Activate RMSNorm
|
||||
)
|
||||
if res is None:
|
||||
res = hidden_states
|
||||
|
||||
return normed_hidden_states, res
|
||||
elif IS_ROCM_SYSTEM:
|
||||
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
out = torch.empty_like(hidden_states)
|
||||
layernorm_ops.rms_norm(
|
||||
out,
|
||||
hidden_states,
|
||||
self.weight.data,
|
||||
self.variance_epsilon,
|
||||
)
|
||||
return out, residual
|
||||
else:
|
||||
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
|
||||
|
||||
|
||||
def load_attention(config, prefix, weights):
|
||||
if config.num_attention_heads != config.num_key_value_heads:
|
||||
return _load_gqa(config, prefix, weights)
|
||||
|
@ -371,10 +297,10 @@ class MistralLayer(nn.Module):
|
|||
)
|
||||
self.mlp = MistralMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
||||
|
||||
self.input_layernorm = MistralRMSNorm(
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = MistralRMSNorm(
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
|
@ -440,7 +366,7 @@ class MistralModel(torch.nn.Module):
|
|||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = MistralRMSNorm(
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix="model.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
|
|
|
@ -0,0 +1,708 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
import numpy as np
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.utils import paged_attention, flash_attn
|
||||
from text_generation_server.utils.flash_attn import HAS_FLASH_ATTN_V2_ROCM, HAS_FLASH_ATTN_V2_CUDA
|
||||
from text_generation_server.utils.layers import (
|
||||
FastLinear,
|
||||
FastRMSNorm,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
PositionRotaryEmbedding,
|
||||
TensorParallelHead,
|
||||
get_linear,
|
||||
)
|
||||
|
||||
if not HAS_FLASH_ATTN_V2_CUDA and not HAS_FLASH_ATTN_V2_ROCM:
|
||||
raise ImportError("Mixtral model requires flash attn v2")
|
||||
|
||||
try:
|
||||
import megablocks.ops as ops
|
||||
except ImportError:
|
||||
raise ImportError("Mixtral model requires megablocks to be installed")
|
||||
|
||||
try:
|
||||
import stk
|
||||
except ImportError:
|
||||
raise ImportError("Mixtral model requires stk to be installed")
|
||||
|
||||
|
||||
class MixtralConfig(PretrainedConfig):
|
||||
model_type = "mixtral"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=14336,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=8,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096 * 32,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-05,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
sliding_window=4096,
|
||||
num_experts_per_tok=2,
|
||||
num_local_experts=8,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.num_local_experts = num_local_experts
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
|
||||
return x.view(1) if len(x.size()) == 0 else x
|
||||
|
||||
|
||||
def load_attention(config, prefix, weights):
|
||||
if config.num_attention_heads != config.num_key_value_heads:
|
||||
return _load_gqa(config, prefix, weights)
|
||||
else:
|
||||
return TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
dim=0,
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
|
||||
def _load_gqa(config, prefix: str, weights):
|
||||
assert config.hidden_size % config.num_attention_heads == 0
|
||||
assert config.num_attention_heads % weights.process_group.size() == 0
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
if config.quantize not in ["gptq", "awq"]:
|
||||
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
|
||||
head_size = config.hidden_size // config.num_attention_heads
|
||||
num_heads = config.num_attention_heads // weights.process_group.size()
|
||||
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
|
||||
assert list(weight.shape) == [
|
||||
(num_heads + 2 * num_key_value_heads) * head_size,
|
||||
config.hidden_size,
|
||||
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=None, quantize=config.quantize)
|
||||
)
|
||||
|
||||
|
||||
def _load_experts(config, prefix, mat, weights):
|
||||
if config.quantize is not None:
|
||||
raise NotImplementedError("Mixtral does not support weight quantization yet.")
|
||||
|
||||
assert mat in ["w1", "w2", "w3"]
|
||||
|
||||
world_size = weights.process_group.size()
|
||||
rank = weights.process_group.rank()
|
||||
|
||||
assert (
|
||||
config.intermediate_size % world_size == 0
|
||||
), f"The chosen size {config.intermediate_size} is not compatible with sharding on {world_size} shards"
|
||||
|
||||
block_size = config.intermediate_size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
|
||||
tensor = torch.empty((config.num_local_experts * block_size, config.hidden_size),
|
||||
dtype=weights.dtype,
|
||||
device=weights.device)
|
||||
|
||||
for i in range(config.num_local_experts):
|
||||
slice_ = weights._get_slice(f"{prefix}.{i}.{mat}.weight")
|
||||
|
||||
if mat == "w2":
|
||||
expert_slice = slice_[:, start:stop].t().contiguous()
|
||||
else:
|
||||
expert_slice = slice_[start:stop]
|
||||
tensor[i * block_size:(i + 1) * block_size] = expert_slice.to(dtype=weights.dtype).to(device=weights.device)
|
||||
return tensor
|
||||
|
||||
|
||||
class MixtralAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix: str,
|
||||
config,
|
||||
weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.max_past = (
|
||||
config.sliding_window if config.sliding_window is not None else 0
|
||||
)
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.head_size = self.hidden_size // self.num_heads
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.head_size,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
self.softmax_scale = self.head_size ** -0.5
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
query, kv = qkv.split(
|
||||
[
|
||||
self.head_size * self.num_heads,
|
||||
2 * self.head_size * self.num_key_value_heads,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
|
||||
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
if prefill_cache_indices is not None:
|
||||
kv_to_cache = kv[prefill_cache_indices]
|
||||
else:
|
||||
kv_to_cache = kv
|
||||
|
||||
paged_attention.reshape_and_cache(
|
||||
kv_to_cache[:, 0], kv_to_cache[:, 1], kv_cache[0], kv_cache[1], slots
|
||||
)
|
||||
|
||||
# output tensor
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
flash_attn.attention(
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
attn_output,
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
window_size_left=self.max_past,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
paged_attention.attention(
|
||||
attn_output,
|
||||
query,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def select_experts(gate_logits: torch.Tensor, top_k: int):
|
||||
# all_probs: (sequence_length, n_experts) and upcast for softmax
|
||||
all_probs = torch.nn.functional.softmax(gate_logits, dim=1, dtype=torch.float)
|
||||
# weights, selected_experts: (sequence_length, top-k)
|
||||
weights, selected_experts = torch.topk(all_probs, top_k, dim=-1)
|
||||
weights /= weights.sum(dim=-1, keepdim=True)
|
||||
weights = weights.view(-1)
|
||||
selected_experts = selected_experts.view(-1)
|
||||
|
||||
return selected_experts, weights
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def round_up(x: torch.Tensor, value: int):
|
||||
return torch.div(x + (value - 1), value, rounding_mode="trunc") * value
|
||||
|
||||
|
||||
class BlockSparseMoE(nn.Module):
|
||||
"""
|
||||
Built on the paper and library Megablocks as described in
|
||||
https://arxiv.org/abs/2211.15841. This implementation is
|
||||
strictly equivalent to standard MoE with full capacity (no
|
||||
dropped tokens). It's faster since it formulates MoE operations
|
||||
in terms of block-sparse operations to accomodate imbalanced
|
||||
assignments of tokens to experts, whereas standard MoE either
|
||||
(1) drop tokens at the cost of reduced performance or (2) set
|
||||
capacity factor to number of experts and thus waste computation
|
||||
and memory on padding.
|
||||
"""
|
||||
|
||||
def __init__(self, prefix, config: MixtralConfig, weights):
|
||||
super().__init__()
|
||||
self.hidden_dim = config.hidden_size
|
||||
self.ffn_dim = config.intermediate_size // weights.process_group.size()
|
||||
self.num_experts = config.num_local_experts
|
||||
self.top_k = config.num_experts_per_tok
|
||||
|
||||
act = config.hidden_act
|
||||
if "gelu" in act:
|
||||
self.act = lambda x: torch.nn.functional.gelu(
|
||||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else "none",
|
||||
)
|
||||
elif "silu" in act:
|
||||
self.act = torch.nn.functional.silu
|
||||
else:
|
||||
self.act = ACT2FN[act]
|
||||
|
||||
# gating
|
||||
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
|
||||
|
||||
# merged expert weights, all of size (n_experts * ffn_dim, hidden_dim)
|
||||
self.w1 = _load_experts(config, f"{prefix}.experts", "w1", weights).t()
|
||||
self.w2 = _load_experts(config, f"{prefix}.experts", "w2", weights)
|
||||
self.w3 = _load_experts(config, f"{prefix}.experts", "w3", weights).t()
|
||||
|
||||
self.offsets = None
|
||||
self.offsets_block_rows = 0
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
# Calculate the number of bits needed to represent the expert indices
|
||||
# so that we can pass it to radix sort.
|
||||
self.sort_end_bit = max(int(np.ceil(np.log2(self.num_experts))), 1)
|
||||
self.blocking = 128
|
||||
self.quantize_scatter_num_bits = -1
|
||||
|
||||
def topology(self, x: torch.Tensor, padded_bins: torch.Tensor):
|
||||
padded_tokens, _ = x.size()
|
||||
assert padded_tokens % self.blocking == 0
|
||||
assert self.ffn_dim % self.blocking == 0
|
||||
|
||||
# Offsets for the sparse matrix. All rows have the
|
||||
# same number of nonzero blocks dictated by the
|
||||
# dimensionality of a single expert.
|
||||
block_rows = padded_tokens // self.blocking
|
||||
blocks_per_row = self.ffn_dim // self.blocking
|
||||
if self.offsets is None or block_rows > self.offsets_block_rows:
|
||||
self.offsets = torch.arange(
|
||||
0,
|
||||
block_rows * blocks_per_row + 1,
|
||||
blocks_per_row,
|
||||
dtype=torch.int32,
|
||||
device=x.device,
|
||||
)
|
||||
self.offsets_block_rows = block_rows
|
||||
offsets = self.offsets
|
||||
else:
|
||||
offsets = self.offsets[:block_rows]
|
||||
|
||||
# Indices for the sparse matrix. The indices for
|
||||
# the intermediate matrix are dynamic depending
|
||||
# on the mapping of tokens to experts.
|
||||
column_indices = ops.topology(padded_bins, self.blocking, block_rows,
|
||||
blocks_per_row)
|
||||
|
||||
# For now, use meta init to save the device memory.
|
||||
data = torch.empty(
|
||||
column_indices.numel(),
|
||||
self.blocking,
|
||||
self.blocking,
|
||||
dtype=x.dtype,
|
||||
device="meta",
|
||||
)
|
||||
shape = (padded_tokens, self.ffn_dim * self.num_experts)
|
||||
row_indices = stk.ops.row_indices(shape, data, offsets, column_indices)
|
||||
return stk.Matrix(
|
||||
shape,
|
||||
data,
|
||||
row_indices,
|
||||
column_indices,
|
||||
offsets,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
|
||||
def indices_and_padded_bins(self, selected_experts: torch.Tensor):
|
||||
# Sort the expert ids to produce the scatter/gather
|
||||
# indices for the permutation.
|
||||
# selected_experts = selected_experts.int()
|
||||
|
||||
# returns bin_ids == num of experts for this sequence ? == unique selected experts?
|
||||
# and indices == how to sort tokens?
|
||||
bin_ids, indices = ops.sort(selected_experts, self.sort_end_bit)
|
||||
# bin_ids => [0, 0, 0, 2, 2, ...] => [num_tokens * top_k]
|
||||
# indices => [14, 32, 33, ...] => [num_tokens * top_k]
|
||||
|
||||
# Histogram the expert ids to identify the number of
|
||||
# tokens routed to each expert.
|
||||
tokens_per_expert = ops.histogram(selected_experts, self.num_experts)
|
||||
# tokens_per_expert => [3, 0, 2, ...] => [num_experts]
|
||||
|
||||
# Round the token counts up to the block size used in
|
||||
# the matrix muliplications. Caculate the starting
|
||||
# position of each bin.
|
||||
|
||||
# List of size num_experts
|
||||
padded_tokens_per_expert = round_up(tokens_per_expert,
|
||||
self.blocking)
|
||||
# padded_tokens_per_expert => [128, O, 128, ...]
|
||||
|
||||
# Cumulative selected experts per token
|
||||
padded_bins = ops.inclusive_cumsum(padded_tokens_per_expert, 0)
|
||||
padded_bins = promote_scalar(padded_bins)
|
||||
# padded_bins => [128, 128, 256, ...]
|
||||
|
||||
# Calculate the bin bounds for the sorted tokens.
|
||||
bins = ops.inclusive_cumsum(tokens_per_expert, 0)
|
||||
bins = promote_scalar(bins)
|
||||
# bins => [3, 3, 5, ...]
|
||||
|
||||
return indices, bin_ids, bins, padded_bins, tokens_per_expert
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
x: (sequence_length, model_dim)
|
||||
gate_logits: (sequence_length, n_experts)
|
||||
"""
|
||||
# optional reshape
|
||||
input_shape = x.shape
|
||||
x = x.view(-1, input_shape[-1])
|
||||
|
||||
# gate_logits: (sequence_length, n_experts)
|
||||
gate_logits = self.gate(x)
|
||||
selected_experts, weights = select_experts(gate_logits, self.top_k)
|
||||
|
||||
(
|
||||
indices,
|
||||
bin_ids,
|
||||
bins,
|
||||
padded_bins,
|
||||
_,
|
||||
) = self.indices_and_padded_bins(selected_experts)
|
||||
|
||||
# Permute tokens and pad to prepare expert computation
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = ops.padded_gather(x, indices, bin_ids, bins, padded_bins,
|
||||
self.top_k)
|
||||
|
||||
# Create the sparse matrix topology
|
||||
with torch.no_grad():
|
||||
topo = self.topology(x, padded_bins)
|
||||
|
||||
# Perform the expert computation
|
||||
# First Dense x Dense -> Sparse for w1 and w3,
|
||||
# (top_k * sequence_length + padding, ffn_dim * n_experts)
|
||||
x = stk.Matrix(
|
||||
topo.size(),
|
||||
self.act(stk.ops.sdd(x, self.w1, topo).data) *
|
||||
stk.ops.sdd(x, self.w3, topo).data,
|
||||
topo.row_indices,
|
||||
topo.column_indices,
|
||||
topo.offsets,
|
||||
topo.column_indices_t,
|
||||
topo.offsets_t,
|
||||
topo.block_offsets_t,
|
||||
)
|
||||
|
||||
# Then Sparse x Dense -> Dense for w2
|
||||
# (top_k * sequence_length + padding, model_dim)
|
||||
x = stk.ops.dsd(x, self.w2)
|
||||
|
||||
# Permute back and remove padding
|
||||
# (sequence_length, model_dim)
|
||||
x = ops.padded_scatter(
|
||||
x,
|
||||
indices,
|
||||
bin_ids,
|
||||
weights,
|
||||
bins,
|
||||
padded_bins,
|
||||
self.top_k,
|
||||
self.quantize_scatter_num_bits,
|
||||
).view(*input_shape)
|
||||
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(x, group=self.process_group)
|
||||
|
||||
return x.view(*input_shape)
|
||||
|
||||
|
||||
class MixtralLayer(nn.Module):
|
||||
def __init__(self, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"model.layers.{layer_id}"
|
||||
|
||||
self.self_attn = MixtralAttention(
|
||||
prefix=f"{prefix}.self_attn", config=config, weights=weights
|
||||
)
|
||||
self.block_sparse_moe = BlockSparseMoE(f"{prefix}.block_sparse_moe", config, weights)
|
||||
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
):
|
||||
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
# Self Attention
|
||||
attn_output = self.self_attn(
|
||||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
)
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, attn_res = self.post_attention_layernorm(
|
||||
attn_output, res
|
||||
)
|
||||
|
||||
block_sparse_moe_output = self.block_sparse_moe(normed_attn_res_output)
|
||||
|
||||
return block_sparse_moe_output, attn_res
|
||||
|
||||
|
||||
class MixtralModel(torch.nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix="model.embed_tokens", weights=weights
|
||||
)
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
MixtralLayer(
|
||||
layer_id,
|
||||
config,
|
||||
weights,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix="model.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashMixtralForCausalLM(torch.nn.Module):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__()
|
||||
|
||||
self.model = MixtralModel(config, weights)
|
||||
self.lm_head = TensorParallelHead.load(
|
||||
config,
|
||||
prefix="lm_head",
|
||||
weights=weights,
|
||||
)
|
||||
self.max_past = config.sliding_window
|
||||
if self.max_past is None:
|
||||
raise ValueError("max_past cannot be None")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
if prefill_cache_indices is not None:
|
||||
# Slots also need to be sliced as it has the same size as the whole kv tensor
|
||||
slots = slots[prefill_cache_indices]
|
||||
else:
|
||||
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
|
||||
# kernel requires the true values
|
||||
max_s = min(self.max_past, max_s)
|
||||
input_lengths = torch.clamp(input_lengths, max=self.max_past)
|
||||
|
||||
hidden_states = self.model(
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.lm_head(hidden_states)
|
||||
return logits
|
|
@ -6,7 +6,6 @@ from transformers.activations import ACT2FN
|
|||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.utils import paged_attention, flash_attn
|
||||
from text_generation_server.utils.flash_attn import attention
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
|
|
|
@ -8,14 +8,13 @@ from dataclasses import dataclass
|
|||
from opentelemetry import trace
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from transformers.models.llama import LlamaTokenizerFast
|
||||
from typing import Optional, Tuple, Type
|
||||
from typing import Optional, Tuple, Type, List
|
||||
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE
|
||||
from text_generation_server.models.cache_manager import (
|
||||
get_cache_manager,
|
||||
set_cache_manager,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
|
||||
FlashMistralForCausalLM,
|
||||
|
@ -105,7 +104,7 @@ class FlashMistralBatch(FlashCausalLMBatch):
|
|||
# request id -> idx in list mapping
|
||||
requests_idx_mapping[r.id] = i
|
||||
|
||||
tokenized_input = tokenized_input[-r.truncate :]
|
||||
tokenized_input = tokenized_input[-r.truncate:]
|
||||
|
||||
input_length = len(tokenized_input)
|
||||
input_lengths.append(input_length)
|
||||
|
@ -278,9 +277,11 @@ class FlashMistralBatch(FlashCausalLMBatch):
|
|||
)
|
||||
|
||||
|
||||
class FlashMistral(FlashCausalLM):
|
||||
class BaseFlashMistral(FlashCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
config_cls,
|
||||
model_cls,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
|
@ -305,7 +306,7 @@ class FlashMistral(FlashCausalLM):
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
config = MistralConfig.from_pretrained(
|
||||
config = config_cls.from_pretrained(
|
||||
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||||
)
|
||||
config.quantize = quantize
|
||||
|
@ -321,10 +322,10 @@ class FlashMistral(FlashCausalLM):
|
|||
if config.quantize in ["gptq", "awq"]:
|
||||
weights._set_gptq_params(model_id)
|
||||
|
||||
model = FlashMistralForCausalLM(config, weights)
|
||||
model = model_cls(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashMistral, self).__init__(
|
||||
super(BaseFlashMistral, self).__init__(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
num_layers=len(model.model.layers),
|
||||
|
@ -396,3 +397,23 @@ class FlashMistral(FlashCausalLM):
|
|||
if batch.prefill_cache_indices is not None:
|
||||
batch.prefill_cache_indices = None
|
||||
return logits
|
||||
|
||||
|
||||
class FlashMistral(BaseFlashMistral):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
super(FlashMistral, self).__init__(
|
||||
config_cls=MistralConfig,
|
||||
model_cls=FlashMistralForCausalLM,
|
||||
model_id=model_id,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code
|
||||
)
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
import torch
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from text_generation_server.models.flash_mistral import BaseFlashMistral
|
||||
from text_generation_server.models.custom_modeling.flash_mixtral_modeling import MixtralConfig, FlashMixtralForCausalLM
|
||||
|
||||
|
||||
class FlashMixtral(BaseFlashMistral):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
super(FlashMixtral, self).__init__(
|
||||
config_cls=MixtralConfig,
|
||||
model_cls=FlashMixtralForCausalLM,
|
||||
model_id=model_id,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code
|
||||
)
|
|
@ -47,12 +47,14 @@ elif CAN_EXLLAMA:
|
|||
create_exllama_buffers,
|
||||
set_device,
|
||||
)
|
||||
|
||||
HAS_EXLLAMA = "2"
|
||||
else:
|
||||
from text_generation_server.utils.gptq.exllama import (Ex4bitLinear as ExllamaQuantLinear,
|
||||
create_exllama_buffers,
|
||||
set_device,
|
||||
)
|
||||
|
||||
HAS_EXLLAMA = "1"
|
||||
|
||||
except ImportError:
|
||||
|
@ -526,9 +528,12 @@ class TensorParallelEmbedding(nn.Module):
|
|||
try:
|
||||
if IS_CUDA_SYSTEM:
|
||||
import dropout_layer_norm
|
||||
elif IS_ROCM_SYSTEM:
|
||||
from vllm import layernorm_ops
|
||||
else:
|
||||
dropout_layer_norm = None
|
||||
|
||||
|
||||
class FastLayerNorm(nn.LayerNorm):
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
|
||||
|
@ -563,10 +568,81 @@ try:
|
|||
residual = hidden_states
|
||||
|
||||
return normed_hidden_states, residual
|
||||
|
||||
|
||||
class FastRMSNorm(nn.Module):
|
||||
def __init__(self, weight: torch.Tensor, eps: float):
|
||||
super().__init__()
|
||||
|
||||
self.weight = nn.Parameter(weight)
|
||||
self.variance_epsilon = eps
|
||||
|
||||
@classmethod
|
||||
def load(cls, prefix, weights, eps=1e-6):
|
||||
weight = weights.get_tensor(f"{prefix}.weight")
|
||||
return cls(weight, eps)
|
||||
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
|
||||
return self.weight * hidden_states, residual
|
||||
elif IS_CUDA_SYSTEM:
|
||||
# faster post attention rms norm
|
||||
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.variance_epsilon,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
True, # Activate RMSNorm
|
||||
)
|
||||
if res is None:
|
||||
res = hidden_states
|
||||
|
||||
return normed_hidden_states, res
|
||||
elif IS_ROCM_SYSTEM:
|
||||
# We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
out = torch.empty_like(hidden_states)
|
||||
layernorm_ops.rms_norm(
|
||||
out,
|
||||
hidden_states,
|
||||
self.weight.data,
|
||||
self.variance_epsilon,
|
||||
)
|
||||
return out, residual
|
||||
else:
|
||||
raise ValueError(
|
||||
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
|
||||
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
try:
|
||||
if IS_CUDA_SYSTEM:
|
||||
from flash_attn.layers.rotary import RotaryEmbedding
|
||||
|
@ -574,12 +650,14 @@ try:
|
|||
elif IS_ROCM_SYSTEM:
|
||||
from vllm import pos_encoding_ops
|
||||
|
||||
|
||||
def _create_inv_freq(dim, base, device):
|
||||
inv_freq = 1.0 / (
|
||||
base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
|
||||
)
|
||||
return inv_freq
|
||||
|
||||
|
||||
def _get_rope_config(config):
|
||||
if os.getenv("ROPE_SCALING", None) is not None:
|
||||
rope_scaling = {
|
||||
|
@ -589,6 +667,7 @@ try:
|
|||
return rope_scaling
|
||||
return getattr(config, "rope_scaling", None)
|
||||
|
||||
|
||||
class PositionRotaryEmbedding(nn.Module):
|
||||
def __init__(self, inv_freq, scaling_factor):
|
||||
super().__init__()
|
||||
|
@ -606,12 +685,12 @@ try:
|
|||
if IS_CUDA_SYSTEM:
|
||||
rotary_dim = cos.shape[-1]
|
||||
q1 = query[..., :rotary_dim]
|
||||
q2 = query[..., rotary_dim : 2 * rotary_dim]
|
||||
q2 = query[..., rotary_dim: 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
||||
|
||||
k1 = key[..., :rotary_dim]
|
||||
k2 = key[..., rotary_dim : 2 * rotary_dim]
|
||||
k2 = key[..., rotary_dim: 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
||||
elif IS_ROCM_SYSTEM:
|
||||
|
@ -630,7 +709,8 @@ try:
|
|||
True
|
||||
)
|
||||
else:
|
||||
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
|
||||
raise ValueError(
|
||||
"Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
|
||||
|
||||
@classmethod
|
||||
def static(cls, config, dim, base, device):
|
||||
|
@ -747,6 +827,7 @@ try:
|
|||
# Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
|
||||
return cos.unsqueeze(1), sin.unsqueeze(1)
|
||||
|
||||
|
||||
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
|
||||
inv_freq = _create_inv_freq(dim, base, device)
|
||||
|
@ -783,8 +864,11 @@ try:
|
|||
|
||||
# Inverse dim formula to find dim based on number of rotations
|
||||
import math
|
||||
|
||||
|
||||
def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
||||
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
|
||||
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
|
||||
|
||||
|
||||
# Find dim range bounds based on rotations
|
||||
def find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
||||
|
@ -792,7 +876,8 @@ try:
|
|||
low_rot, dim, base, max_position_embeddings))
|
||||
high = math.ceil(find_correction_dim(
|
||||
high_rot, dim, base, max_position_embeddings))
|
||||
return max(low, 0), min(high, dim-1) # Clamp values just in case
|
||||
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
||||
|
||||
|
||||
def linear_ramp_mask(min, max, dim):
|
||||
if min == max:
|
||||
|
@ -802,13 +887,16 @@ try:
|
|||
ramp_func = torch.clamp(linear_func, 0, 1)
|
||||
return ramp_func
|
||||
|
||||
|
||||
def get_mscale(scale=1):
|
||||
if scale <= 1:
|
||||
return 1.0
|
||||
return 0.1 * math.log(scale) + 1.0
|
||||
|
||||
|
||||
class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor,*, extrapolation_factor, attn_factor, beta_fast, beta_slow):
|
||||
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor, *, extrapolation_factor,
|
||||
attn_factor, beta_fast, beta_slow):
|
||||
inv_freq = _create_inv_freq(dim, base, device)
|
||||
super().__init__(inv_freq, scaling_factor)
|
||||
self.dim = dim
|
||||
|
@ -818,7 +906,8 @@ try:
|
|||
self.attn_factor = attn_factor
|
||||
self.beta_fast = beta_fast
|
||||
self.beta_slow = beta_slow
|
||||
self.mscale = float(get_mscale(self.scaling_factor) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
||||
self.mscale = float(get_mscale(
|
||||
self.scaling_factor) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
||||
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
# Reset the tables if the sequence length has changed,
|
||||
|
@ -834,13 +923,15 @@ try:
|
|||
)
|
||||
freqs = 1.0 / inv_freq_extrapolation
|
||||
inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
|
||||
low, high = find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.max_position_embeddings)
|
||||
inv_freq_mask = (1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
||||
low, high = find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base,
|
||||
self.max_position_embeddings)
|
||||
inv_freq_mask = (1 - linear_ramp_mask(low, high, self.dim // 2).float().to(
|
||||
device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
||||
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
||||
|
||||
self.inv_freq = inv_freq
|
||||
self.mscale = float(get_mscale(self.scaling_factor) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
||||
|
||||
self.mscale = float(get_mscale(
|
||||
self.scaling_factor) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
||||
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
|
|
Loading…
Reference in New Issue