parent
0e4ab6d31c
commit
3ea8259af1
|
@ -10,6 +10,7 @@ Text Generation Inference enables serving optimized models on specific hardware
|
|||
- [Llama](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
||||
- [Phi 3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)
|
||||
- [Gemma](https://huggingface.co/google/gemma-7b)
|
||||
- [Gemma2](https://huggingface.co/google/gemma2-9b)
|
||||
- [Cohere](https://huggingface.co/CohereForAI/c4ai-command-r-plus)
|
||||
- [Dbrx](https://huggingface.co/databricks/dbrx-instruct)
|
||||
- [Mamba](https://huggingface.co/state-spaces/mamba-2.8b-slimpj)
|
||||
|
|
|
@ -68,6 +68,9 @@ try:
|
|||
from text_generation_server.models.flash_gemma import (
|
||||
FlashGemma,
|
||||
)
|
||||
from text_generation_server.models.flash_gemma2 import (
|
||||
FlashGemma2,
|
||||
)
|
||||
from text_generation_server.models.pali_gemma import (
|
||||
PaliGemma,
|
||||
)
|
||||
|
@ -102,6 +105,7 @@ if FLASH_ATTENTION:
|
|||
__all__.append(FlashQwen2)
|
||||
__all__.append(FlashStarcoder2)
|
||||
__all__.append(FlashGemma)
|
||||
__all__.append(FlashGemma2)
|
||||
__all__.append(FlashCohere)
|
||||
|
||||
MAMBA_AVAILABLE = True
|
||||
|
@ -143,6 +147,11 @@ class ModelType(enum.Enum):
|
|||
"name": "Gemma",
|
||||
"url": "https://huggingface.co/google/gemma-7b",
|
||||
}
|
||||
GEMMA2 = {
|
||||
"type": "gemma2",
|
||||
"name": "Gemma2",
|
||||
"url": "https://huggingface.co/google/gemma2-9b",
|
||||
}
|
||||
COHERE = {
|
||||
"type": "cohere",
|
||||
"name": "Cohere",
|
||||
|
@ -630,6 +639,27 @@ def get_model(
|
|||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == GEMMA2:
|
||||
if FLASH_ATTENTION:
|
||||
return FlashGemma2(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
|
||||
else:
|
||||
return CausalLM(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
if model_type == COHERE:
|
||||
if FLASH_ATTENTION:
|
||||
|
|
|
@ -0,0 +1,500 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.layers.attention import (
|
||||
paged_attention,
|
||||
attention,
|
||||
reshape_and_cache,
|
||||
)
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
SpeculativeHead,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
)
|
||||
|
||||
|
||||
class Gemma2Config(PretrainedConfig):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=256128,
|
||||
hidden_size=3072,
|
||||
intermediate_size=24576,
|
||||
num_hidden_layers=28,
|
||||
num_attention_heads=16,
|
||||
num_key_value_heads=16,
|
||||
head_dim=256,
|
||||
hidden_act="gelu_pytorch_tanh",
|
||||
max_position_embeddings=8192,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=True,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.head_dim = head_dim
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
class Gemma2FastRMSNorm(FastRMSNorm):
|
||||
@classmethod
|
||||
def load(cls, prefix, weights, eps=1e-6):
|
||||
dtype = weights.dtype
|
||||
weights.dtype = torch.float32
|
||||
weight = weights.get_tensor(f"{prefix}.weight") + 1
|
||||
weights.dtype = dtype
|
||||
new = cls(weight, eps)
|
||||
new.dtype = dtype
|
||||
return new
|
||||
|
||||
# perform the multiplication in full precision and downcast after
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
||||
hidden_states = hidden_states * self.weight
|
||||
return hidden_states.to(self.dtype), residual
|
||||
|
||||
|
||||
def load_attention(config, prefix, weights):
|
||||
if config.num_attention_heads != config.num_key_value_heads:
|
||||
return _load_gqa(config, prefix, weights)
|
||||
else:
|
||||
return TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
dim=0,
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
|
||||
def _load_gqa(config, prefix: str, weights):
|
||||
assert config.num_attention_heads % weights.process_group.size() == 0
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
if config.quantize not in ["gptq", "awq", "marlin"]:
|
||||
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
|
||||
head_size = config.head_dim
|
||||
num_heads = config.num_attention_heads // weights.process_group.size()
|
||||
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
|
||||
assert list(weight.shape) == [
|
||||
(num_heads + 2 * num_key_value_heads) * head_size,
|
||||
config.hidden_size,
|
||||
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=None, quantize=config.quantize)
|
||||
)
|
||||
|
||||
|
||||
class FlashGemma2Attention(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights, causal: bool, is_sliding: bool):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.head_size = config.head_dim
|
||||
self.causal = causal
|
||||
if is_sliding:
|
||||
self.window_size = config.sliding_window
|
||||
else:
|
||||
self.window_size = -1
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.head_size,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
# self.softmax_scale = self.head_size**-0.5
|
||||
self.softmax_scale = config.query_pre_attn_scalar**-0.5
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights)
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
query, kv = qkv.split(
|
||||
[
|
||||
self.head_size * self.num_heads,
|
||||
2 * self.head_size * self.num_key_value_heads,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
|
||||
|
||||
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
reshape_and_cache(kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots)
|
||||
|
||||
# output tensor
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
attention(
|
||||
query,
|
||||
torch.select(kv, dim=1, index=0),
|
||||
torch.select(kv, dim=1, index=1),
|
||||
attn_output,
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
causal=self.causal,
|
||||
window_size_left=self.window_size,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
paged_attention(
|
||||
attn_output,
|
||||
query,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
|
||||
class Gemma2MLP(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
act = config.hidden_act
|
||||
self.act = (
|
||||
ACT2FN[act]
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(
|
||||
x,
|
||||
approximate=(
|
||||
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
|
||||
),
|
||||
)
|
||||
)
|
||||
# Fuse gate and up proj
|
||||
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
|
||||
weights=weights,
|
||||
dim=0,
|
||||
bias=False,
|
||||
)
|
||||
self.down_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.intermediate_size = (
|
||||
config.intermediate_size // weights.process_group.size()
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
gate_up_states = self.gate_up_proj(hidden_states)
|
||||
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
|
||||
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
|
||||
|
||||
|
||||
class FlashGemma2Layer(nn.Module):
|
||||
def __init__(self, prefix, config, weights, causal: bool, is_sliding: bool):
|
||||
super().__init__()
|
||||
self.self_attn = FlashGemma2Attention(
|
||||
prefix=f"{prefix}.self_attn",
|
||||
config=config,
|
||||
weights=weights,
|
||||
causal=causal,
|
||||
is_sliding=is_sliding,
|
||||
)
|
||||
self.mlp = Gemma2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
|
||||
|
||||
self.input_layernorm = Gemma2FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = Gemma2FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.pre_feedforward_layernorm = Gemma2FastRMSNorm.load(
|
||||
prefix=f"{prefix}.pre_feedforward_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.post_feedforward_layernorm = Gemma2FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_feedforward_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
# Self Attention
|
||||
attn_output = self.self_attn(
|
||||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, _ = self.post_attention_layernorm(attn_output)
|
||||
normed_attn_res_output = normed_attn_res_output + res
|
||||
res = normed_attn_res_output
|
||||
|
||||
pre_normed, _ = self.pre_feedforward_layernorm(normed_attn_res_output)
|
||||
mlp_output = self.mlp(pre_normed)
|
||||
post_hidden_states, _ = self.post_feedforward_layernorm(mlp_output)
|
||||
|
||||
return post_hidden_states, normed_attn_res_output
|
||||
|
||||
|
||||
class FlashGemma2Model(torch.nn.Module):
|
||||
def __init__(self, prefix, config, weights, causal: bool):
|
||||
super().__init__()
|
||||
|
||||
process_group = weights.process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
FlashGemma2Layer(
|
||||
prefix=f"{prefix}.layers.{layer_id}",
|
||||
config=config,
|
||||
weights=weights,
|
||||
causal=causal,
|
||||
is_sliding=layer_id % 2 == 0,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = Gemma2FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashGemma2ForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix, config, weights, causal: bool):
|
||||
super().__init__()
|
||||
|
||||
embed_norm = config.hidden_size**0.5
|
||||
if not prefix:
|
||||
prefix = "model"
|
||||
else:
|
||||
prefix = f"{prefix}.model"
|
||||
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.embed_tokens", weights=weights
|
||||
)
|
||||
self.embed_tokens.weight *= embed_norm
|
||||
|
||||
self.model = FlashGemma2Model(
|
||||
prefix=prefix, config=config, weights=weights, causal=causal
|
||||
)
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
prefix=(
|
||||
f"{prefix}.embed_tokens"
|
||||
if config.tie_word_embeddings
|
||||
else f"{prefix}.lm_head"
|
||||
),
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
input_embeds = self.embed_tokens(input_ids)
|
||||
hidden_states = self.model(
|
||||
input_embeds,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.lm_head(hidden_states)
|
||||
return logits, speculative_logits
|
|
@ -375,8 +375,6 @@ class FlashGemmaModel(torch.nn.Module):
|
|||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
|
|
@ -28,8 +28,12 @@ from text_generation_server.models.types import (
|
|||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.globals import MEM_POOL, CUDA_GRAPHS
|
||||
import text_generation_server.models.globals as tgi_globals
|
||||
from text_generation_server.models.globals import (
|
||||
MEM_POOL,
|
||||
CUDA_GRAPHS,
|
||||
get_adapter_to_index,
|
||||
MODEL_ID,
|
||||
)
|
||||
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
|
||||
from text_generation_server.utils.dist import MEMORY_FRACTION
|
||||
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
|
||||
|
@ -233,7 +237,8 @@ class FlashCausalLMBatch(Batch):
|
|||
stopping_criterias.append(stopping_criteria)
|
||||
top_n_tokens.append(r.top_n_tokens)
|
||||
|
||||
adapter_index = tgi_globals.ADAPTER_TO_INDEX.get(r.adapter_id, 0)
|
||||
ADAPTER_TO_INDEX = get_adapter_to_index()
|
||||
adapter_index = ADAPTER_TO_INDEX.get(r.adapter_id, 0)
|
||||
adapter_indices_list.append(torch.full((input_length,), adapter_index))
|
||||
adapter_set.add(adapter_index)
|
||||
|
||||
|
@ -499,9 +504,8 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
top_n_tokens.append(self.top_n_tokens[idx])
|
||||
|
||||
adapter_index = tgi_globals.ADAPTER_TO_INDEX.get(
|
||||
self.requests[idx].adapter_id, 0
|
||||
)
|
||||
ADAPTER_TO_INDEX = get_adapter_to_index()
|
||||
adapter_index = ADAPTER_TO_INDEX.get(self.requests[idx].adapter_id, 0)
|
||||
adapter_set.add(adapter_index)
|
||||
|
||||
remaining_tokens = (
|
||||
|
@ -1017,7 +1021,7 @@ class FlashCausalLM(Model):
|
|||
|
||||
tunableop_filepath = os.path.join(
|
||||
HUGGINGFACE_HUB_CACHE,
|
||||
f"tunableop_{tgi_globals.MODEL_ID.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
|
||||
f"tunableop_{MODEL_ID.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from opentelemetry import trace
|
||||
from typing import Optional
|
||||
from transformers import PretrainedConfig, AutoTokenizer
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
|
||||
FlashGemma2ForCausalLM,
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
Weights,
|
||||
)
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
class FlashGemma2(FlashCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
speculator: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
self.process_group, rank, world_size = initialize_torch_distributed()
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
else:
|
||||
raise NotImplementedError("FlashGemma2 is only available on GPU")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
config = PretrainedConfig.from_pretrained(
|
||||
model_id, revision=revision, trust_remote_code=trust_remote_code
|
||||
)
|
||||
config.quantize = quantize
|
||||
config.speculator = speculator
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
||||
if config.quantize in ["gptq", "awq", "marlin"]:
|
||||
weights._set_gptq_params(model_id, revision)
|
||||
|
||||
# TODO hardcoded
|
||||
prefix = ""
|
||||
model = FlashGemma2ForCausalLM(prefix, config, weights, causal=True)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashGemma2, self).__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
num_layers=len(model.model.layers),
|
||||
num_kv_heads=model.model.num_key_value_heads,
|
||||
head_size=model.model.head_size,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
)
|
|
@ -44,3 +44,8 @@ ADAPTER_TO_INDEX: Dict[str, int] = None
|
|||
def set_adapter_to_index(adapter_to_index: Dict[str, int]):
|
||||
global ADAPTER_TO_INDEX
|
||||
ADAPTER_TO_INDEX = adapter_to_index
|
||||
|
||||
|
||||
def get_adapter_to_index():
|
||||
global ADAPTER_TO_INDEX
|
||||
return ADAPTER_TO_INDEX
|
||||
|
|
Loading…
Reference in New Issue