v1.0.0 (#727)
This commit is contained in:
parent
bde25e62b3
commit
3ef5ffbc64
|
@ -2893,7 +2893,7 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "text-generation-benchmark"
|
||||
version = "0.9.4"
|
||||
version = "1.0.0"
|
||||
dependencies = [
|
||||
"average",
|
||||
"clap",
|
||||
|
@ -2913,7 +2913,7 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "text-generation-client"
|
||||
version = "0.9.4"
|
||||
version = "1.0.0"
|
||||
dependencies = [
|
||||
"futures",
|
||||
"grpc-metadata",
|
||||
|
@ -2929,7 +2929,7 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "text-generation-launcher"
|
||||
version = "0.9.4"
|
||||
version = "1.0.0"
|
||||
dependencies = [
|
||||
"clap",
|
||||
"ctrlc",
|
||||
|
@ -2945,7 +2945,7 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "text-generation-router"
|
||||
version = "0.9.4"
|
||||
version = "1.0.0"
|
||||
dependencies = [
|
||||
"async-stream",
|
||||
"axum",
|
||||
|
|
|
@ -8,7 +8,7 @@ members = [
|
|||
]
|
||||
|
||||
[workspace.package]
|
||||
version = "0.9.4"
|
||||
version = "1.0.0"
|
||||
edition = "2021"
|
||||
authors = ["Olivier Dehaene"]
|
||||
homepage = "https://github.com/huggingface/text-generation-inference"
|
||||
|
|
12
README.md
12
README.md
|
@ -7,16 +7,14 @@
|
|||
<a href="https://github.com/huggingface/text-generation-inference">
|
||||
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
|
||||
<img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
|
||||
</a>
|
||||
<a href="https://huggingface.github.io/text-generation-inference">
|
||||
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
||||
to power LLMs api-inference widgets.
|
||||
to power Hugging Chat, the Inference API and Inference Endpoint.
|
||||
|
||||
</div>
|
||||
|
||||
## Table of contents
|
||||
|
||||
|
@ -85,7 +83,7 @@ The easiest way of getting started is using the official Docker container:
|
|||
model=tiiuae/falcon-7b-instruct
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.4 --model-id $model
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.0 --model-id $model
|
||||
```
|
||||
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
|
||||
|
||||
|
@ -152,7 +150,7 @@ model=meta-llama/Llama-2-7b-chat-hf
|
|||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
token=<your cli READ token>
|
||||
|
||||
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
|
||||
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.0 --model-id $model
|
||||
```
|
||||
|
||||
### A note on Shared Memory (shm)
|
||||
|
|
|
@ -10,7 +10,7 @@
|
|||
"name": "Apache 2.0",
|
||||
"url": "https://www.apache.org/licenses/LICENSE-2.0"
|
||||
},
|
||||
"version": "0.9.4"
|
||||
"version": "1.0.0"
|
||||
},
|
||||
"paths": {
|
||||
"/": {
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
vllm_commit := 084ca75d4271f8f67be731bc58e0d41d8e0afd3a
|
||||
vllm_commit := d284b831c17f42a8ea63369a06138325f73c4cf9
|
||||
|
||||
vllm:
|
||||
# Clone vllm
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
[tool.poetry]
|
||||
name = "text-generation-server"
|
||||
version = "0.9.4"
|
||||
version = "1.0.0"
|
||||
description = "Text Generation Inference Python gRPC Server"
|
||||
authors = ["Olivier Dehaene <olivier@huggingface.co>"]
|
||||
|
||||
|
|
|
@ -219,31 +219,36 @@ class TensorParallelHead(SuperLayer):
|
|||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if not self.should_gather:
|
||||
return super().forward(input)
|
||||
|
||||
world_size = self.process_group.size()
|
||||
# Fast branch for single requests
|
||||
if (
|
||||
self.should_gather
|
||||
and len(input.shape) == 2
|
||||
and isinstance(self.linear, FastLinear)
|
||||
and input.shape[0] == 1
|
||||
):
|
||||
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
|
||||
out_dim = self.linear.weight.shape[0]
|
||||
|
||||
world_out = input.new_empty(1, out_dim * world_size)
|
||||
local_out = input.new_empty(1, out_dim)
|
||||
if input.shape[0] == 1:
|
||||
world_out = input.new_empty(1, out_dim * world_size)
|
||||
local_out = input.new_empty(1, out_dim)
|
||||
gather_input = local_out
|
||||
else:
|
||||
world_out = input.new_empty(out_dim * world_size, input.shape[0])
|
||||
gather_input = input.new_empty(out_dim, input.shape[0])
|
||||
local_out = gather_input.T
|
||||
|
||||
torch.mm(input, self.linear.weight.T, out=local_out)
|
||||
|
||||
torch.distributed.all_gather_into_tensor(
|
||||
world_out, local_out, group=self.process_group
|
||||
world_out, gather_input, group=self.process_group
|
||||
)
|
||||
return world_out
|
||||
|
||||
if input.shape[0] == 1:
|
||||
return world_out
|
||||
return world_out.T
|
||||
|
||||
output = super().forward(input)
|
||||
if not self.should_gather:
|
||||
return output
|
||||
|
||||
world_output = [torch.empty_like(output) for _ in range(world_size)]
|
||||
world_output = [
|
||||
torch.empty_like(output) for _ in range(self.process_group.size())
|
||||
]
|
||||
torch.distributed.all_gather(world_output, output, group=self.process_group)
|
||||
world_output = torch.cat(world_output, dim=-1)
|
||||
return world_output
|
||||
|
|
Loading…
Reference in New Issue