feat(server): Support AutoModelForSeq2SeqLM

This commit is contained in:
OlivierDehaene 2022-11-04 18:03:04 +01:00
parent c5665f5c8b
commit 427d7cc444
11 changed files with 892 additions and 376 deletions

View File

@ -15,12 +15,20 @@ A Rust and gRPC server for text generation inference.
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
- 45ms per token generation for BLOOM with 8xA100 80GB
## Supported models
## Officialy supported models
- BLOOM
- BLOOMZ
- BLOOM-560m
Other models are supported on a best effort basis using:
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
or
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
## Load Tests for BLOOM
See `k6/load_test.js`
@ -81,7 +89,6 @@ make router-dev
## TODO:
- [ ] Support AutoModelForSeq2SeqLM
- [ ] Add tests for the `server/model` logic
- [ ] Backport custom CUDA kernels to Transformers
- [ ] Install safetensors with pip

View File

@ -54,8 +54,6 @@ message Batch {
repeated Request requests = 2;
/// Batch size (==len(requests))
uint32 size = 3;
/// Length of the longest sequence within the batch (used for padding)
uint32 max_sequence_length = 4;
}
message GeneratedText {

View File

@ -142,14 +142,10 @@ impl Db {
// Batch size
let size = requests.len();
// Longest input length for all requests in batch size
// Used for padding inside the inference server
let max_sequence_length = requests.iter().map(|r| r.input_length).max().unwrap();
let batch = Batch {
id: state.next_batch_id,
requests,
size: size as u32,
max_sequence_length,
};
// Update next_batch_start_id to the last id in the batch + 1
state.next_batch_start_id = ids.last().unwrap() + 1;

View File

@ -1,16 +1,18 @@
from typing import Dict, Optional
from typing import Dict, Optional, TypeVar
from text_generation.models.types import Batch
B = TypeVar("B", bound=Batch)
class Cache:
def __init__(self):
self.cache: Dict[int, Batch] = {}
self.cache: Dict[int, B] = {}
def pop(self, batch_id: int) -> Optional[Batch]:
def pop(self, batch_id: int) -> Optional[B]:
return self.cache.pop(batch_id, None)
def set(self, entry: Batch):
def set(self, entry: B):
if entry is not None:
self.cache[entry.batch_id] = entry

View File

@ -1,8 +1,9 @@
from text_generation.models.model import Model
from text_generation.models.bloom import BLOOMSharded
from text_generation.models.causal_lm import CausalLM
from text_generation.models.bloom import BLOOMSharded
from text_generation.models.seq2seq_lm import Seq2SeqLM
__all__ = ["Model", "BLOOMSharded", "CausalLM"]
__all__ = ["Model", "BLOOMSharded", "CausalLM", "Seq2SeqLM"]
def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
@ -18,4 +19,7 @@ def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
raise ValueError("sharded is not supported for AutoModel")
if quantize:
raise ValueError("quantize is not supported for AutoModel")
try:
return CausalLM(model_name)
except Exception as e:
return Seq2SeqLM(model_name)

View File

@ -12,7 +12,7 @@ from transformers.models.bloom.parallel_layers import (
TensorParallelRowLinear,
)
from text_generation.models import Model
from text_generation.models import CausalLM
from text_generation.utils import (
initialize_torch_distributed,
weight_files,
@ -29,7 +29,7 @@ except Exception as e:
torch.manual_seed(0)
class BLOOMSharded(Model):
class BLOOMSharded(CausalLM):
def __init__(self, model_name: str, quantize: bool = False):
if not model_name.startswith("bigscience/bloom"):
raise ValueError(f"Model {model_name} is not supported")
@ -78,8 +78,11 @@ class BLOOMSharded(Model):
)
self.model = model.eval().to(dtype)
torch.distributed.barrier(group=self.process_group)
super(BLOOMSharded, self).__init__(tokenizer=tokenizer, num_heads=config.n_head // self.process_group.size(),
device=device)
super(CausalLM, self).__init__(
tokenizer=tokenizer,
num_heads=config.n_head // self.process_group.size(),
device=device,
)
@staticmethod
def load_weights(

View File

@ -1,9 +1,211 @@
import torch
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForCausalLM
from typing import Optional, Tuple, List
from typing import Optional, Tuple, List, Dict, Type
from text_generation.models import Model
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria
@dataclass
class CausalLMBatch:
batch_id: int
requests: List[generate_pb2.Request]
all_input_lengths: List[int]
input_ids: Dict[str, torch.Tensor]
all_input_ids: List[torch.Tensor]
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
size: int
max_sequence_length: int
def to_pb(self):
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
)
@classmethod
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "CausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
all_input_lengths = []
# Parse batch
for r in pb.requests:
inputs.append(r.inputs)
all_input_lengths.append(r.input_length)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
top_k=r.parameters.top_k,
top_p=r.parameters.top_p,
do_sample=r.parameters.do_sample,
)
)
stopping_criterias.append(
StoppingCriteria(
eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
)
)
input_ids = tokenizer(
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
).to(device)
all_input_ids = input_ids["input_ids"].unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
all_input_lengths=all_input_lengths,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=pb.size,
max_sequence_length=max(all_input_lengths),
)
@classmethod
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_sequence_length = max(batch.max_sequence_length for batch in batches)
# Batch attributes
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
requests = []
all_input_lengths = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
all_input_lengths.extend(batch.all_input_lengths)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Slicing end index for this batch
end_index = start_index + batch.size
# We only concatenate batches that did at least one step
if batch.input_ids["input_ids"].shape[1] > 1:
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
# Initialize tensors
if i == 0:
input_ids["input_ids"] = torch.empty(
(total_batch_size, 1),
dtype=batch.input_ids["input_ids"].dtype,
device=batch.input_ids["input_ids"].device,
)
input_ids["attention_mask"] = torch.zeros(
(total_batch_size, max_sequence_length),
dtype=batch.input_ids["attention_mask"].dtype,
device=batch.input_ids["attention_mask"].device,
)
# input_ids["input_ids"] is always of shape [batch_size, 1]
# We do not need to pad it
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
# We need to slice the attention mask to remove padding from previous steps
input_ids["attention_mask"][
start_index:end_index, -batch.max_sequence_length :
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length :]
for j, past in enumerate(batch.input_ids["past_key_values"]):
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM: [batch_size * num_heads, ...] vs [batch_size, num_heads, ...]
head_dim, padded_sequence_length = past[0].shape[-2:]
num_heads = (
past[0]
.view(batch.size, -1, head_dim, padded_sequence_length)
.shape[1]
)
# This will run only once per layer
if j == len(input_ids["past_key_values"]):
input_ids["past_key_values"].append([])
# Decoder past
for k, t in enumerate(past):
# Needed because BLOOM past shapes are not the same for keys and values
# Keys: [batch_size * num_heads, head_dim, seq_length]
# Values: [batch_size * num_heads, seq_length, head_dim]
head_dim_last = False
if t.shape[-2] == head_dim:
t = t.view(
batch.size, num_heads, head_dim, padded_sequence_length
)
padded_t_shape = (
total_batch_size,
num_heads,
head_dim,
max_sequence_length - 1,
)
elif t.shape[-1] == head_dim:
head_dim_last = True
t = t.view(
batch.size, num_heads, padded_sequence_length, head_dim
)
padded_t_shape = (
total_batch_size,
num_heads,
max_sequence_length - 1,
head_dim,
)
else:
raise ValueError(f"shape {t.shape} is not valid")
# Initialize tensors
# This will run only once per layer and per past tensor
if k == len(input_ids["past_key_values"][j]):
input_ids["past_key_values"][j].append(
torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
)
# We slice the past keys and values to remove the padding from previous batches
if not head_dim_last:
input_ids["past_key_values"][j][k][
start_index:end_index,
:,
:,
-(batch.max_sequence_length - 1) :,
] = t[:, :, :, -(batch.max_sequence_length - 1) :]
else:
input_ids["past_key_values"][j][k][
start_index:end_index,
:,
-(batch.max_sequence_length - 1) :,
:,
] = t[:, :, -(batch.max_sequence_length - 1) :, :]
start_index += batch.size
return cls(
batch_id=batches[0].batch_id,
requests=requests,
all_input_lengths=all_input_lengths,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_sequence_length=max_sequence_length,
)
class CausalLM(Model):
@ -23,7 +225,15 @@ class CausalLM(Model):
device_map="auto" if torch.cuda.is_available() else None,
).eval()
super(CausalLM, self).__init__(tokenizer=tokenizer, num_heads=self.model.config.num_attention_heads, device=device)
super(CausalLM, self).__init__(
tokenizer=tokenizer,
num_heads=self.model.config.num_attention_heads,
device=device,
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
def forward(
self, input_ids, attention_mask, past_key_values: Optional = None
@ -36,3 +246,129 @@ class CausalLM(Model):
use_cache=True,
)
return outputs.logits, outputs.past_key_values
def generate_token(
self, batch: CausalLMBatch
) -> Tuple[List[GeneratedText], Optional[CausalLMBatch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
logits, past = self.forward(**batch.input_ids)
# List of indices to cache
next_batch_keep_indices = []
# New input_ids for next forward
next_batch_input_ids = []
next_batch_all_input_ids = []
next_all_input_lengths = []
next_batch_size = 0
next_batch_max_sequence_length = 0
# Finished requests
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.all_input_lengths,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
logits,
next_token_chooser,
stopping_criteria,
all_tokens,
) in enumerate(iterator):
# Select next token
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
# Append next token to all tokens
all_tokens = torch.cat([all_tokens, next_token])
# Evaluate stopping criteria
if stopping_criteria(all_tokens):
# Decode all tokens
output = self.tokenizer.decode(
all_tokens.squeeze(-1), skip_special_tokens=True
)
# Add to the list of finished generations with the original request
generated_texts.append(
GeneratedText(request, output, stopping_criteria.current_tokens)
)
# add to the next batch
else:
next_batch_keep_indices.append(i)
next_batch_input_ids.append(next_token)
next_batch_all_input_ids.append(all_tokens)
next_batch_size += 1
new_input_length = input_length + 1
next_all_input_lengths.append(new_input_length)
next_batch_max_sequence_length = max(
next_batch_max_sequence_length, new_input_length
)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
# If we finished at least one generation
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
if generated_texts:
# Apply indices to attention mask, past key values and other items that need to be cached
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
next_batch_keep_indices
]
# Force past to be of dim [batch_size, num_heads, ...] for easy indexing
next_batch_input_ids["past_key_values"] = [
[
t.view(-1, self.num_heads, *t.shape[-2:])[next_batch_keep_indices]
for t in layer
]
for layer in past
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
next_batch_input_ids["past_key_values"] = past
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
next_batch_input_ids["attention_mask"] = torch.cat(
[
next_batch_input_ids["attention_mask"],
torch.ones((next_batch_size, 1)).to(self.device),
],
dim=1,
)
next_batch = CausalLMBatch(
batch_id=batch.batch_id,
requests=next_batch_requests,
all_input_lengths=next_all_input_lengths,
input_ids=next_batch_input_ids,
all_input_ids=next_batch_all_input_ids,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_sequence_length=next_batch_max_sequence_length,
)
return generated_texts, next_batch

View File

@ -1,11 +1,13 @@
import torch
from abc import ABC, abstractmethod
from typing import List, Tuple, Optional
from typing import List, Tuple, Optional, TypeVar, Type
from tokenizers import Tokenizer
from text_generation.models.types import Batch, GeneratedText
B = TypeVar("B", bound=Batch)
class Model(ABC):
def __init__(self, tokenizer: Tokenizer, num_heads: int, device: torch.device):
@ -13,127 +15,11 @@ class Model(ABC):
self.num_heads = num_heads
self.device = device
@property
@abstractmethod
def forward(self, input_ids, attention_mask, past_key_values: Optional = None) -> Tuple[torch.Tensor, List[Tuple]]:
def batch_type(self) -> Type[B]:
raise NotImplementedError
def generate_token(
self, batch: Batch
) -> Tuple[List[GeneratedText], Optional[Batch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
logits, past = self.forward(**batch.input_ids)
# List of indices to cache
next_batch_keep_indices = []
# New input_ids for next forward
next_batch_input_ids = []
next_batch_all_input_ids = []
next_all_input_lengths = []
next_batch_size = 0
next_batch_max_sequence_length = 0
# Finished requests
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.all_input_lengths,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
logits,
next_token_chooser,
stopping_criteria,
all_tokens,
) in enumerate(iterator):
# Select next token
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
# Append next token to all tokens
all_tokens = torch.cat([all_tokens, next_token])
# Evaluate stopping criteria
if stopping_criteria(all_tokens):
# Decode all tokens
output = self.tokenizer.decode(
all_tokens.squeeze(-1), skip_special_tokens=True
)
# Add to the list of finished generations with the original request
generated_texts.append(GeneratedText(request, output, stopping_criteria.current_tokens))
# add to the next batch
else:
next_batch_keep_indices.append(i)
next_batch_input_ids.append(next_token)
next_batch_all_input_ids.append(all_tokens)
next_batch_size += 1
new_input_length = input_length + 1
next_all_input_lengths.append(new_input_length)
next_batch_max_sequence_length = max(
next_batch_max_sequence_length, new_input_length
)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
# If we finished at least one generation
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
if generated_texts:
# Apply indices to attention mask, past key values and other items that need to be cached
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
next_batch_keep_indices
]
# Force past to be of dim [batch_size, num_heads, ...] for easy indexing
next_batch_input_ids["past_key_values"] = [
[t.view(-1, self.num_heads, *t.shape[-2:])[next_batch_keep_indices] for t in layer]
for layer in past
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
next_batch_input_ids["past_key_values"] = past
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
next_batch_input_ids["attention_mask"] = torch.cat(
[
next_batch_input_ids["attention_mask"],
torch.ones((next_batch_size, 1)).to(self.device),
],
dim=1,
)
next_batch = Batch(
batch_id=batch.batch_id,
requests=next_batch_requests,
all_input_lengths=next_all_input_lengths,
input_ids=next_batch_input_ids,
all_input_ids=next_batch_all_input_ids,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_sequence_length=next_batch_max_sequence_length,
)
return generated_texts, next_batch
@abstractmethod
def generate_token(self, batch: B) -> Tuple[List[GeneratedText], Optional[B]]:
raise NotImplementedError

View File

@ -0,0 +1,488 @@
import torch
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from typing import Optional, Tuple, List, Type
from text_generation.models import Model
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria
@dataclass
class Seq2SeqLMBatch:
batch_id: int
requests: List[generate_pb2.Request]
input_ids: torch.Tensor
attention_mask: torch.Tensor
decoder_input_ids: torch.Tensor
decoder_attention_mask: Optional[torch.Tensor]
encoder_last_hidden_state: Optional[torch.Tensor]
past_key_values: Optional[List[Tuple]]
input_lengths: List[int]
decoder_input_lengths: List[int]
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
size: int
max_input_length: int
max_decoder_input_length: int
def to_pb(self):
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
)
@classmethod
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "Seq2SeqLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
input_lengths = []
decoder_input_ids = []
decoder_input_lengths = []
# Parse batch
for r in pb.requests:
inputs.append(r.inputs)
input_lengths.append(r.input_length)
decoder_input_ids.append(tokenizer.bos_token_id)
decoder_input_lengths.append(1)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
top_k=r.parameters.top_k,
top_p=r.parameters.top_p,
do_sample=r.parameters.do_sample,
)
)
stopping_criterias.append(
StoppingCriteria(
eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
)
)
tokenized_inputs = tokenizer(
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
).to(device)
decoder_input_ids = torch.tensor(decoder_input_ids).to(device).unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
input_ids=tokenized_inputs["input_ids"],
attention_mask=tokenized_inputs["attention_mask"],
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=None,
encoder_last_hidden_state=None,
past_key_values=None,
input_lengths=input_lengths,
decoder_input_lengths=decoder_input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=len(pb.requests),
max_input_length=max(input_lengths),
max_decoder_input_length=1,
)
@classmethod
def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_input_length = max(batch.max_input_length for batch in batches)
max_decoder_input_length = max(
batch.max_decoder_input_length for batch in batches
)
# Batch attributes
requests = []
input_lengths = []
decoder_input_lengths = []
next_token_choosers = []
stopping_criterias = []
input_ids = None
attention_mask = None
decoder_input_ids = None
decoder_attention_mask = None
encoder_last_hidden_state = None
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
decoder_input_lengths.extend(batch.decoder_input_lengths)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Slicing end index for this batch
end_index = start_index + batch.size
# We only concatenate batches that did at least one step
if batch.encoder_last_hidden_state is None:
raise ValueError("Batch encoder_last_hidden_state cannot be None")
if input_ids is None:
input_ids = torch.zeros(
(total_batch_size, max_input_length),
dtype=batch.input_ids.dtype,
device=batch.input_ids.device,
)
input_ids[
start_index:end_index, -batch.max_input_length :
] = batch.input_ids[:, -batch.max_input_length :]
if attention_mask is None:
attention_mask = torch.zeros(
(total_batch_size, max_input_length),
dtype=batch.attention_mask.dtype,
device=batch.attention_mask.device,
)
attention_mask[
start_index:end_index, -batch.max_input_length :
] = batch.attention_mask[:, -batch.max_input_length :]
if decoder_input_ids is None:
decoder_input_ids = torch.zeros(
(total_batch_size, max_decoder_input_length),
dtype=batch.decoder_input_ids.dtype,
device=batch.decoder_input_ids.device,
)
decoder_input_ids[
start_index:end_index, -batch.max_decoder_input_length :
] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]
if decoder_attention_mask is None:
decoder_attention_mask = torch.zeros(
(total_batch_size, max_decoder_input_length),
dtype=batch.attention_mask.dtype,
device=batch.attention_mask.device,
)
if batch.decoder_attention_mask is None:
decoder_attention_mask[
start_index:end_index, -batch.max_decoder_input_length :
] = 1
else:
decoder_attention_mask[
start_index:end_index, -batch.max_decoder_input_length :
] = batch.decoder_attention_mask[:, -batch.max_decoder_input_length :]
if encoder_last_hidden_state is None:
encoder_last_hidden_state = torch.zeros(
(
total_batch_size,
max_input_length,
batch.encoder_last_hidden_state.shape[-1],
),
dtype=batch.encoder_last_hidden_state.dtype,
device=batch.encoder_last_hidden_state.device,
)
encoder_last_hidden_state[
start_index:end_index, -batch.max_decoder_input_length :, :
] = batch.encoder_last_hidden_state[:, -batch.max_decoder_input_length :, :]
for j, past in enumerate(batch.past_key_values):
_, num_heads, _, head_dim = past[0].shape
# This will run only once per layer
if j == len(past_key_values):
past_key_values.append([])
# Decoder past
for k, t in enumerate(past[:2]):
padded_t_shape = (
total_batch_size,
num_heads,
(max_decoder_input_length - 1),
head_dim,
)
# Initialize tensors
# This will run only once per layer and per past tensor
if k == len(past_key_values[j]):
past_key_values[j].append(
torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
)
# We slice the past keys and values to remove the padding from previous batches
past_key_values[j][k][
start_index:end_index,
:,
-(batch.max_decoder_input_length - 1) :,
:,
] = t[:, :, -(batch.max_decoder_input_length - 1) :, :]
# encoder past
for k, t in enumerate(past[2:]):
padded_t_shape = (
total_batch_size,
num_heads,
max_input_length,
head_dim,
)
idx = k + 2
# Initialize tensors
# This will run only once per layer and per past tensor
if idx == len(past_key_values[j]):
past_key_values[j].append(
torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
)
past_key_values[j][idx][
start_index:end_index, :, -batch.max_input_length :, :
] = t[:, :, -batch.max_input_length :, :]
start_index += batch.size
return cls(
batch_id=batches[0].batch_id,
requests=requests,
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_last_hidden_state=encoder_last_hidden_state,
past_key_values=past_key_values,
input_lengths=input_lengths,
decoder_input_lengths=decoder_input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_input_length=max_input_length,
max_decoder_input_length=max_decoder_input_length,
)
class Seq2SeqLM(Model):
def __init__(self, model_name: str):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
else:
device = torch.device("cpu")
dtype = torch.float32
self.model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.bos_token_id = self.model.config.decoder_start_token_id
super(Seq2SeqLM, self).__init__(
tokenizer=tokenizer,
num_heads=self.model.config.num_attention_heads,
device=device,
)
@property
def batch_type(self) -> Type[Seq2SeqLMBatch]:
return Seq2SeqLMBatch
def forward(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask: Optional,
encoder_last_hidden_state: Optional,
past_key_values: Optional = None,
) -> Tuple[
torch.Tensor,
torch.Tensor,
List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
]:
# Model Forward
if past_key_values is not None:
decoder_input_ids = decoder_input_ids[:, -1].unsqueeze(-1)
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=[encoder_last_hidden_state]
if encoder_last_hidden_state is not None
else None,
past_key_values=past_key_values,
use_cache=True,
)
return (
outputs.logits,
outputs.encoder_last_hidden_state,
outputs.past_key_values,
)
def generate_token(
self, batch: Seq2SeqLMBatch
) -> Tuple[List[GeneratedText], Optional[Seq2SeqLMBatch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
logits, encoder_last_hidden_state, past = self.forward(
batch.input_ids,
batch.attention_mask,
batch.decoder_input_ids,
batch.decoder_attention_mask,
batch.encoder_last_hidden_state,
batch.past_key_values,
)
# List of indices to cache
next_batch_keep_indices = []
# New input_ids for next forward
next_batch_input_lengths = []
next_batch_decoder_input_ids = []
next_batch_decoder_input_lengths = []
next_batch_size = 0
next_batch_max_input_length = 0
next_batch_max_decoder_input_length = 0
# Finished requests
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.decoder_input_lengths,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.input_ids,
batch.decoder_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
decoder_input_length,
logits,
next_token_chooser,
stopping_criteria,
input_tokens,
decoder_tokens,
) in enumerate(iterator):
all_tokens = torch.cat([input_tokens, decoder_tokens])
# Select next token
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
# Append next token to decoder tokens
decoder_tokens = torch.cat([decoder_tokens, next_token.squeeze(1)])
# Evaluate stopping criteria
if stopping_criteria(decoder_tokens):
# Decode all tokens
output = self.tokenizer.decode(decoder_tokens, skip_special_tokens=True)
# Add to the list of finished generations with the original request
generated_texts.append(
GeneratedText(request, output, stopping_criteria.current_tokens)
)
# add to the next batch
else:
next_batch_keep_indices.append(i)
next_batch_decoder_input_ids.append(decoder_tokens.unsqueeze(0))
next_batch_size += 1
new_decoder_input_length = decoder_input_length + 1
next_batch_input_lengths.append(input_length)
next_batch_decoder_input_lengths.append(new_decoder_input_length)
next_batch_max_input_length = max(
next_batch_max_input_length, input_length
)
next_batch_max_decoder_input_length = max(
next_batch_max_decoder_input_length, new_decoder_input_length
)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
# If we finished at least one generation
next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
if generated_texts:
next_batch_input_ids = batch.input_ids[next_batch_keep_indices]
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
if batch.decoder_attention_mask is not None:
next_batch_decoder_attention_mask = batch.decoder_attention_mask[
next_batch_keep_indices
]
else:
next_batch_decoder_attention_mask = None
next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
next_batch_keep_indices
]
next_batch_past_key_values = [
[t[next_batch_keep_indices] for t in layer] for layer in past
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_input_ids = batch.input_ids
next_batch_attention_mask = batch.attention_mask
next_batch_decoder_attention_mask = batch.decoder_attention_mask
next_batch_encoder_last_hidden_state = encoder_last_hidden_state
next_batch_past_key_values = past
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
if next_batch_decoder_attention_mask is not None:
next_batch_decoder_attention_mask = torch.cat(
[
next_batch_decoder_attention_mask,
torch.ones((next_batch_size, 1)).to(self.device),
],
dim=1,
)
next_batch = Seq2SeqLMBatch(
batch_id=batch.batch_id,
requests=next_batch_requests,
input_ids=next_batch_input_ids,
attention_mask=next_batch_attention_mask,
decoder_input_ids=next_batch_decoder_input_ids,
decoder_attention_mask=next_batch_decoder_attention_mask,
encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
past_key_values=next_batch_past_key_values,
input_lengths=next_batch_input_lengths,
decoder_input_lengths=next_batch_decoder_input_lengths,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_input_length=next_batch_max_input_length,
max_decoder_input_length=next_batch_max_decoder_input_length,
)
return generated_texts, next_batch

View File

@ -1,237 +1,30 @@
import torch
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import List, Dict
from typing import List
from transformers import AutoTokenizer
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria
@dataclass
class Batch:
batch_id: int
requests: List[generate_pb2.Request]
all_input_lengths: List[int]
input_ids: Dict[str, torch.Tensor]
all_input_ids: List[torch.Tensor]
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
size: int
max_sequence_length: int
def to_pb(self):
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
max_sequence_length=self.max_sequence_length,
)
class Batch(ABC):
@abstractmethod
def to_pb(self) -> generate_pb2.Batch:
raise NotImplementedError
@classmethod
@abstractmethod
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "Batch":
inputs = []
next_token_choosers = []
stopping_criterias = []
all_input_lengths = []
# Parse batch
for r in pb.requests:
inputs.append(r.inputs)
all_input_lengths.append(r.input_length)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
top_k=r.parameters.top_k,
top_p=r.parameters.top_p,
do_sample=r.parameters.do_sample,
)
)
stopping_criterias.append(
StoppingCriteria(
eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
)
)
input_ids = tokenizer(
inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
).to(device)
all_input_ids = input_ids["input_ids"].unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
all_input_lengths=all_input_lengths,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=pb.size,
max_sequence_length=pb.max_sequence_length,
)
raise NotImplementedError
@classmethod
@abstractmethod
def concatenate(cls, batches: List["Batch"]) -> "Batch":
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_sequence_length = max(batch.max_sequence_length for batch in batches)
# Only needed for Seq2SeqLM
max_encoded_sequence_length = None
# Batch attributes
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
requests = []
all_input_lengths = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
all_input_lengths.extend(batch.all_input_lengths)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Slicing end index for this batch
end_index = start_index + batch.size
# We only concatenate batches that did at least one step
if batch.input_ids["input_ids"].shape[1] > 1:
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
# Initialize tensors
if i == 0:
input_ids["input_ids"] = torch.empty(
(total_batch_size, 1),
dtype=batch.input_ids["input_ids"].dtype,
device=batch.input_ids["input_ids"].device,
)
input_ids["attention_mask"] = torch.zeros(
(total_batch_size, max_sequence_length),
dtype=batch.input_ids["attention_mask"].dtype,
device=batch.input_ids["attention_mask"].device,
)
# input_ids["input_ids"] is always of shape [batch_size, 1]
# We do not need to pad it
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
# We need to slice the attention mask to remove padding from previous steps
input_ids["attention_mask"][
start_index:end_index, -batch.max_sequence_length:
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length:]
for j, past in enumerate(batch.input_ids["past_key_values"]):
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM: [batch_size * num_heads, ...] vs [batch_size, num_heads, ...]
head_dim, padded_sequence_length = past[0].shape[-2:]
num_heads = (
past[0]
.view(batch.size, -1, head_dim, padded_sequence_length)
.shape[1]
)
# This will run only once per layer
if j == len(input_ids["past_key_values"]):
input_ids["past_key_values"].append([])
# Decoder past
for k, t in enumerate(past[:2]):
# Needed because BLOOM past shapes are not the same for keys and values
# Keys: [batch_size * num_heads, head_dim, seq_length]
# Values: [batch_size * num_heads, seq_length, head_dim]
head_dim_last = False
if t.shape[-2] == head_dim:
t = t.view(
batch.size, num_heads, head_dim, padded_sequence_length
)
padded_t_shape = (
total_batch_size,
num_heads,
head_dim,
max_sequence_length - 1,
)
elif t.shape[-1] == head_dim:
head_dim_last = True
t = t.view(
batch.size, num_heads, padded_sequence_length, head_dim
)
padded_t_shape = (
total_batch_size,
num_heads,
max_sequence_length - 1,
head_dim,
)
else:
raise ValueError(f"shape {t.shape} is not valid")
# Initialize tensors
# This will run only once per layer and per past tensor
if k == len(input_ids["past_key_values"][j]):
input_ids["past_key_values"][j].append(
torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
)
# We slice the past keys and values to remove the padding from previous batches
if not head_dim_last:
input_ids["past_key_values"][j][k][
start_index:end_index,
:,
:,
-(batch.max_sequence_length - 1):,
] = t[:, :, :, -(batch.max_sequence_length - 1):]
else:
input_ids["past_key_values"][j][k][
start_index:end_index,
:,
-(batch.max_sequence_length - 1):,
:,
] = t[:, :, -(batch.max_sequence_length - 1):, :]
# Seq2SeqLM specific past (encoder past)
for k, t in enumerate(past[2:]):
if max_encoded_sequence_length is None:
max_encoded_sequence_length = max(max(batch.all_input_lengths) for batch in batches)
batch_max_encoded_sequence_length = max(batch.all_input_lengths)
padded_t_shape = (total_batch_size, num_heads, max_encoded_sequence_length, head_dim)
idx = k + 2
# Initialize tensors
# This will run only once per layer and per past tensor
if idx == len(input_ids["past_key_values"][j]):
input_ids["past_key_values"][j].append(
torch.zeros(padded_t_shape, dtype=t.dtype, device=t.device)
)
input_ids["past_key_values"][j][idx][
start_index:end_index,
:,
-batch_max_encoded_sequence_length:,
:
] = t[:, :, -batch_max_encoded_sequence_length:, :]
start_index += batch.size
return cls(
batch_id=batches[0].batch_id,
requests=requests,
all_input_lengths=all_input_lengths,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_sequence_length=max_sequence_length,
)
raise NotImplementedError
@dataclass
@ -241,4 +34,6 @@ class GeneratedText:
tokens: int
def to_pb(self) -> generate_pb2.GeneratedText:
return generate_pb2.GeneratedText(request=self.request, output=self.output, tokens=self.tokens)
return generate_pb2.GeneratedText(
request=self.request, output=self.output, tokens=self.tokens
)

View File

@ -9,7 +9,6 @@ from typing import List
from text_generation.cache import Cache
from text_generation.models import Model, get_model
from text_generation.models.types import Batch
from text_generation.pb import generate_pb2_grpc, generate_pb2
@ -27,7 +26,9 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
return generate_pb2.ClearCacheResponse()
async def Generate(self, request, context):
batch = Batch.from_pb(request.batch, self.model.tokenizer, self.model.device)
batch = self.model.batch_type.from_pb(
request.batch, self.model.tokenizer, self.model.device
)
generated_texts, next_batch = self.model.generate_token(batch)
self.cache.set(next_batch)
@ -51,7 +52,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
batches.append(batch)
if len(batches) > 1:
batch = Batch.concatenate(batches)
batch = self.model.batch_type.concatenate(batches)
else:
batch = batches[0]