Refactored gRPC interface

Added validation logic
This commit is contained in:
Olivier Dehaene 2022-10-11 16:50:54 +02:00
parent fa9a088467
commit 4c693e6524
13 changed files with 612 additions and 361 deletions

View File

@ -1,6 +1,23 @@
# BLOOM Inference
# Text Generation Inference
A Rust and gRPC server for BLOOM Inference.
A Rust and gRPC server for text generation inference.
## Load Tests
See `k6/load_test.js`
We send the default examples with a 1 second delay between each request.
Stages:
- Ramp up to 50 concurrent requests per second in 1min
- Ramp up from 50 to 100 concurrent requests per second in 2min
- Ramp down to 0 concurrent requests per second in 1min
| | avg | min | med | max | p(90) | p(95) | RPS |
|------------------------|-----------|-----------|-----------|------------|-----------|-----------|----------|
| Original code | 8.9s | 1s | 9.12s | 16.69s | 13.7s | 14.26s | 5.9 |
| ISO with original code | 8.88s | 959.53ms | 8.89s | 17.08s | 13.34s | 14.12s | 5.94 |
| New batching logic | **5.44s** | **1.27s** | **5.28s** | **13.12s** | **7.78s** | **8.92s** | **9.08** |
## Install

View File

@ -2,21 +2,35 @@ syntax = "proto3";
package generate.v1;
service TextGeneration {
service TextGenerationService {
/// Service discovery
rpc ServiceDiscovery(Empty) returns (ServiceDiscoveryResponse) {}
rpc ServiceDiscovery (ServiceDiscoveryRequest) returns (ServiceDiscoveryResponse) {}
/// Empties batch cache
rpc ClearCache(Empty) returns (Empty);
/// Generate tokens for a batch without cache
rpc Generate(Batch) returns (Response);
/// Generate tokens for a batch with cache
rpc GenerateWithCache(BatchCached) returns (Response);
rpc ClearCache (ClearCacheRequest) returns (ClearCacheResponse);
/// Generate tokens for a batch
rpc Generate (GenerateRequest) returns (GenerateResponse);
/// Generate tokens for a list of cached batches
rpc GenerateWithCache (GenerateWithCacheRequest) returns (GenerateWithCacheResponse);
/// Generate tokens until the text of at least one request of the batch is generated
rpc GenerateUntilFinished (GenerateUntilFinishedRequest) returns (GenerateUntilFinishedResponse);
/// Generate tokens until the text of at least one request of the cached batches i finished
rpc GenerateUntilFinishedWithCache (GenerateUntilFinishedWithCacheRequest) returns (GenerateUntilFinishedWithCacheResponse);
}
/// Empty request
message ServiceDiscoveryRequest {}
message ServiceDiscoveryResponse {
/// Other shards urls
repeated string urls = 1;
}
/// Empty request
message ClearCacheRequest {}
/// Empty response
message ClearCacheResponse {}
message LogitsWarperParameters {
float temperature = 1;
uint32 top_k = 2;
@ -29,10 +43,12 @@ message Request {
uint64 id = 1;
/// The generation context
string inputs = 2;
/// The number of tokens inside inputs
uint32 input_length = 3;
/// Logits Warper Parameters
LogitsWarperParameters parameters = 3;
LogitsWarperParameters parameters = 4;
/// Stopping criteria
uint32 max_new_tokens = 4;
uint32 max_new_tokens = 5;
}
message Batch {
@ -40,44 +56,63 @@ message Batch {
uint64 id = 1;
/// Individual requests
repeated Request requests = 2;
/// Batch size (==len(requests))
uint32 size = 3;
/// Length of the longest sequence within the batch (used for padding)
uint32 max_sequence_length = 4;
}
message BatchCached {
/// Batch ID
uint64 id = 1;
/// Request ids within cache
repeated uint64 request_ids = 2;
/// Cache IDs
repeated uint64 batch_cached_ids = 3;
/// Batch size (sum of all batch sizes)
uint32 total_batch_size = 4;
/// Max sequence length
uint32 max_sequence_length = 5;
}
message FinishedGeneration {
/// ID of the original request
uint64 id = 1;
message GeneratedText {
/// Request
Request request = 1;
/// Output
string output = 2;
}
message CacheEntry {
/// Cache ID; same as batch ID
uint64 id = 1;
/// Requests present in cache entry
repeated uint64 request_ids = 2;
/// Sequence length
uint32 sequence_length = 3;
message GenerateRequest {
/// Batch
Batch batch = 1;
}
message Response {
/// Finished requests (optional)
repeated FinishedGeneration finished = 1;
/// Cache entry (optional)
optional CacheEntry cache_entry = 2;
message GenerateResponse {
/// Finished requests
repeated GeneratedText generated_texts = 1;
/// Next batch (cached)
optional Batch batch = 2;
}
message GenerateWithCacheRequest {
/// Cached batches
repeated Batch batches = 1;
}
// Represent an empty message.
message Empty {}
message GenerateWithCacheResponse {
/// Finished requests
repeated GeneratedText generated_texts = 1;
/// Next batch (cached)
optional Batch batch = 2;
}
message GenerateUntilFinishedRequest {
/// Batch
Batch batch = 1;
}
message GenerateUntilFinishedResponse {
/// Finished requests
repeated GeneratedText generated_texts = 1;
/// Next batch (cached)
optional Batch batch = 2;
}
message GenerateUntilFinishedWithCacheRequest {
/// Cached batches
repeated Batch batches = 1;
}
message GenerateUntilFinishedWithCacheResponse {
/// Finished requests
repeated GeneratedText generated_texts = 1;
/// Next batch (cached)
optional Batch batch = 2;
}

View File

@ -1,4 +1,4 @@
use crate::pb::generate::v1::text_generation_client::TextGenerationClient;
use crate::pb::generate::v1::text_generation_service_client::TextGenerationServiceClient;
use crate::pb::generate::v1::*;
use crate::Result;
use std::time::Duration;
@ -9,7 +9,7 @@ use tracing::*;
/// BLOOM Inference gRPC client
#[derive(Clone)]
pub struct Client {
stub: TextGenerationClient<Timeout<Channel>>,
stub: TextGenerationServiceClient<Timeout<Channel>>,
}
impl Client {
@ -22,13 +22,13 @@ impl Client {
let timeout_channel = Timeout::new(channel, timeout);
Self {
stub: TextGenerationClient::new(timeout_channel),
stub: TextGenerationServiceClient::new(timeout_channel),
}
}
/// Returns a client connected to the given unix socket. Requests exceeding timeout will fail.
pub async fn connect_uds(path: String, timeout: Duration) -> Self {
let channel = Channel::from_shared(format!("http://[::]:50051"))
let channel = Channel::from_shared("http://[::]:50051".to_string())
.unwrap()
.connect_with_connector(tower::service_fn(move |_: Uri| {
tokio::net::UnixStream::connect(path.clone())
@ -38,13 +38,13 @@ impl Client {
let timeout_channel = Timeout::new(channel, timeout);
Self {
stub: TextGenerationClient::new(timeout_channel),
stub: TextGenerationServiceClient::new(timeout_channel),
}
}
#[instrument(skip(self))]
pub async fn service_discovery(&mut self) -> Result<Vec<String>> {
let request = tonic::Request::new(Empty {});
let request = tonic::Request::new(ServiceDiscoveryRequest {});
let response = self
.stub
.service_discovery(request)
@ -64,7 +64,7 @@ impl Client {
#[instrument(skip(self))]
pub async fn clear_cache(&mut self) -> Result<()> {
let request = tonic::Request::new(Empty {});
let request = tonic::Request::new(ClearCacheRequest {});
self.stub
.clear_cache(request)
.instrument(info_span!("clear_cache"))
@ -73,32 +73,59 @@ impl Client {
}
#[instrument(skip(self))]
pub async fn generate(
&mut self,
request: Batch,
) -> Result<(Vec<FinishedGeneration>, Option<CacheEntry>)> {
let request = tonic::Request::new(request);
pub async fn generate(&mut self, batch: Batch) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let request = tonic::Request::new(GenerateRequest { batch: Some(batch) });
let response = self
.stub
.generate(request)
.instrument(info_span!("generate"))
.await?
.into_inner();
Ok((response.finished, response.cache_entry))
Ok((response.generated_texts, response.batch))
}
#[instrument(skip(self))]
pub async fn generate_with_cache(
&mut self,
request: BatchCached,
) -> Result<(Vec<FinishedGeneration>, Option<CacheEntry>)> {
let request = tonic::Request::new(request);
batches: Vec<Batch>,
) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let request = tonic::Request::new(GenerateWithCacheRequest { batches });
let response = self
.stub
.generate_with_cache(request)
.instrument(info_span!("generate_with_cache"))
.await?
.into_inner();
Ok((response.finished, response.cache_entry))
Ok((response.generated_texts, response.batch))
}
#[instrument(skip(self))]
pub async fn generate_until_finished(
&mut self,
batch: Batch,
) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let request = tonic::Request::new(GenerateUntilFinishedRequest { batch: Some(batch) });
let response = self
.stub
.generate_until_finished(request)
.instrument(info_span!("generate_until_finished"))
.await?
.into_inner();
Ok((response.generated_texts, response.batch))
}
#[instrument(skip(self))]
pub async fn generate_until_finished_with_cache(
&mut self,
batches: Vec<Batch>,
) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let request = tonic::Request::new(GenerateUntilFinishedWithCacheRequest { batches });
let response = self
.stub
.generate_until_finished_with_cache(request)
.instrument(info_span!("generate_until_finished_with_cache"))
.await?
.into_inner();
Ok((response.generated_texts, response.batch))
}
}

View File

@ -5,9 +5,7 @@ mod pb;
mod sharded_client;
pub use client::Client;
pub use pb::generate::v1::{
Batch, BatchCached, CacheEntry, FinishedGeneration, LogitsWarperParameters, Request,
};
pub use pb::generate::v1::{Batch, GeneratedText, LogitsWarperParameters, Request};
pub use sharded_client::ShardedClient;
use thiserror::Error;
pub use tonic::transport::Uri;

View File

@ -1,5 +1,5 @@
use crate::Result;
use crate::{Batch, BatchCached, CacheEntry, Client, FinishedGeneration};
use crate::{Batch, Client, GeneratedText};
use futures::future::join_all;
use std::time::Duration;
use tokio::sync::{broadcast, mpsc};
@ -9,11 +9,19 @@ use tonic::transport::Uri;
enum Command {
Generate(
Batch,
mpsc::Sender<Result<(Vec<FinishedGeneration>, Option<CacheEntry>)>>,
mpsc::Sender<Result<(Vec<GeneratedText>, Option<Batch>)>>,
),
GenerateWithCache(
BatchCached,
mpsc::Sender<Result<(Vec<FinishedGeneration>, Option<CacheEntry>)>>,
Vec<Batch>,
mpsc::Sender<Result<(Vec<GeneratedText>, Option<Batch>)>>,
),
GenerateUntilFinished(
Batch,
mpsc::Sender<Result<(Vec<GeneratedText>, Option<Batch>)>>,
),
GenerateUntilFinishedWithCache(
Vec<Batch>,
mpsc::Sender<Result<(Vec<GeneratedText>, Option<Batch>)>>,
),
ClearCache(mpsc::Sender<Result<()>>),
}
@ -25,8 +33,16 @@ async fn client_task(mut client: Client, mut request_subscriber: broadcast::Rece
let result = client.generate(batch).await;
response_tx.try_send(result).unwrap_or(());
}
Command::GenerateWithCache(batch_cached, response_tx) => {
let result = client.generate_with_cache(batch_cached).await;
Command::GenerateWithCache(batches, response_tx) => {
let result = client.generate_with_cache(batches).await;
response_tx.try_send(result).unwrap_or(());
}
Command::GenerateUntilFinished(batch, response_tx) => {
let result = client.generate_until_finished(batch).await;
response_tx.try_send(result).unwrap_or(());
}
Command::GenerateUntilFinishedWithCache(batches, response_tx) => {
let result = client.generate_until_finished_with_cache(batches).await;
response_tx.try_send(result).unwrap_or(());
}
Command::ClearCache(response_tx) => {
@ -74,10 +90,7 @@ impl ShardedClient {
Self::from_master_client(master_client).await
}
pub async fn generate(
&self,
batch: Batch,
) -> Result<(Vec<FinishedGeneration>, Option<CacheEntry>)> {
pub async fn generate(&self, batch: Batch) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let (response_tx, mut response_rx) = mpsc::channel(1);
self.request_tx
.send(Command::Generate(batch, response_tx))
@ -87,11 +100,36 @@ impl ShardedClient {
pub async fn generate_with_cache(
&self,
batch_cached: BatchCached,
) -> Result<(Vec<FinishedGeneration>, Option<CacheEntry>)> {
batches: Vec<Batch>,
) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let (response_tx, mut response_rx) = mpsc::channel(1);
self.request_tx
.send(Command::GenerateWithCache(batch_cached, response_tx))
.send(Command::GenerateWithCache(batches, response_tx))
.unwrap();
response_rx.recv().await.unwrap()
}
pub async fn generate_until_finished(
&self,
batch: Batch,
) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let (response_tx, mut response_rx) = mpsc::channel(1);
self.request_tx
.send(Command::GenerateUntilFinished(batch, response_tx))
.unwrap();
response_rx.recv().await.unwrap()
}
pub async fn generate_until_finished_with_cache(
&self,
batches: Vec<Batch>,
) -> Result<(Vec<GeneratedText>, Option<Batch>)> {
let (response_tx, mut response_rx) = mpsc::channel(1);
self.request_tx
.send(Command::GenerateUntilFinishedWithCache(
batches,
response_tx,
))
.unwrap();
response_rx.recv().await.unwrap()
}

View File

@ -1,10 +1,9 @@
use crate::Db;
use bloom_inference_client::{
Batch, BatchCached, CacheEntry, ClientError, FinishedGeneration, ShardedClient,
};
use std::sync::Arc;
use tokio::sync::{Notify, oneshot};
use crate::server::GenerateRequest;
use crate::Db;
use bloom_inference_client::{Batch, ClientError, GeneratedText, ShardedClient};
use std::future::Future;
use std::sync::Arc;
use tokio::sync::{oneshot, Notify};
const MAX_LENGTH: usize = 128;
@ -32,12 +31,16 @@ impl Batcher {
Self { db, shared }
}
pub(crate) async fn infer(&self, request: GenerateRequest) -> Result<String, InferError> {
pub(crate) async fn infer(
&self,
input_length: usize,
request: GenerateRequest,
) -> Result<String, InferError> {
if self.db.len() > MAX_LENGTH {
return Err(InferError {});
}
let (request_tx, request_rx) = oneshot::channel();
self.db.append(request, request_tx);
self.db.append(input_length, request, request_tx);
self.shared.batching_task.notify_waiters();
match request_rx.await.unwrap() {
Ok(output) => Ok(output),
@ -51,76 +54,57 @@ async fn batching_task(client: ShardedClient, db: Db, shared: Arc<Shared>) {
shared.batching_task.notified().await;
if let Some(batch) = db.next_batch(32) {
let mut cache_entry = infer_batch(batch, &client, &db).await;
loop {
if let Some(entry) = cache_entry {
let mut batch_cached_ids = vec![entry.id];
let mut total_batch_size = entry.request_ids.len();
let mut max_sequence_length = entry.sequence_length;
let mut request_ids = entry.request_ids;
// if total_batch_size <= 16 {
// if let Some(batch) = db.next_batch_minimum_size(16, 48) {
// let other_cache_entry = infer_batch(batch, &client, &db).await;
//
// if let Some(entry) = other_cache_entry {
// batch_cached_ids.push(entry.id);
// total_batch_size += entry.request_ids.len();
// max_sequence_length =
// max_sequence_length.max(entry.sequence_length);
// request_ids.extend(entry.request_ids.into_iter());
// }
// }
// }
let batch_cached = BatchCached {
id: entry.id,
batch_cached_ids,
total_batch_size: total_batch_size as u32,
max_sequence_length,
request_ids,
let request_ids = batch.requests.iter().map(|req| req.id).collect();
let mut cached_batch = match batch.size {
size if size > 16 => {
wrap_future(client.generate_until_finished(batch), request_ids, &db).await
}
_ => wrap_future(client.generate(batch), request_ids, &db).await,
};
cache_entry = infer_batch_cached(batch_cached, &client, &db).await;
} else {
break;
while let Some(batch) = cached_batch {
let batch_size = batch.size;
let mut request_ids: Vec<u64> = batch.requests.iter().map(|req| req.id).collect();
let mut batches = vec![batch];
if batch_size <= 16 {
if let Some(new_batch) = db.next_batch_minimum_size(16, 48) {
let new_batch_request_ids =
new_batch.requests.iter().map(|req| req.id).collect();
let new_cached_batch =
wrap_future(client.generate(new_batch), new_batch_request_ids, &db)
.await;
if let Some(new_cached_batch) = new_cached_batch {
request_ids.extend(new_cached_batch.requests.iter().map(|req| req.id));
batches.push(new_cached_batch);
}
}
}
cached_batch = match batch_size {
size if size > 16 => {
wrap_future(client.generate_until_finished_with_cache(batches), request_ids, &db).await
}
_ => wrap_future(client.generate_with_cache(batches), request_ids, &db).await,
};
}
}
}
}
async fn infer_batch_cached(
batch: BatchCached,
client: &ShardedClient,
async fn wrap_future(
future: impl Future<Output = Result<(Vec<GeneratedText>, Option<Batch>), ClientError>>,
request_ids: Vec<u64>,
db: &Db,
) -> Option<CacheEntry> {
match client.generate_with_cache(batch.clone()).await {
Ok((finished, cache_entry)) => {
send_finished(finished, db);
cache_entry
) -> Option<Batch> {
match future.await {
Ok((generated_texts, next_batch)) => {
send_generated(generated_texts, db);
next_batch
}
Err(err) => {
println!("{:?}", err);
send_error(err, batch.request_ids, &db);
None
}
}
}
async fn infer_batch(batch: Batch, client: &ShardedClient, db: &Db) -> Option<CacheEntry> {
match client.generate(batch.clone()).await {
Ok((finished, cache_entry)) => {
send_finished(finished, db);
cache_entry
}
Err(err) => {
println!("{:?}", err);
send_error(
err,
batch.requests.into_iter().map(|req| req.id).collect(),
&db,
);
send_error(err, request_ids, db);
None
}
}
@ -133,9 +117,9 @@ fn send_error(error: ClientError, request_ids: Vec<u64>, db: &Db) {
});
}
fn send_finished(finished: Vec<FinishedGeneration>, db: &Db) {
fn send_generated(finished: Vec<GeneratedText>, db: &Db) {
finished.into_iter().for_each(|output| {
let (_, response_tx) = db.remove(&output.id).unwrap();
let (_, response_tx) = db.remove(&output.request.unwrap().id).unwrap();
response_tx.send(Ok(output.output)).unwrap_or(());
});
}

View File

@ -46,6 +46,7 @@ impl Db {
pub(crate) fn append(
&self,
input_length: usize,
request: GenerateRequest,
sender: Sender<Result<String, ClientError>>,
) {
@ -63,6 +64,7 @@ impl Db {
let request = Request {
id,
inputs: request.inputs,
input_length: input_length as u32,
parameters,
max_new_tokens: request.parameters.max_new_tokens,
};
@ -103,9 +105,13 @@ impl Db {
pub(crate) fn next_batch(&self, max_size: usize) -> Option<Batch> {
if let Some((last_id, requests)) = self.next_requests(max_size) {
let mut state = self.shared.state.write();
let size = requests.len();
let max_sequence_length = requests.iter().map(|r| r.input_length).max().unwrap();
let batch = Batch {
id: state.next_batch_id,
requests,
size: size as u32,
max_sequence_length,
};
state.next_batch_start_id = last_id + 1;
state.next_batch_id += 1;
@ -122,9 +128,13 @@ impl Db {
if let Some((last_id, requests)) = self.next_requests(max_size) {
if requests.len() >= min_size {
let mut state = self.shared.state.write();
let size = requests.len();
let max_sequence_length = requests.iter().map(|r| r.input_length).max().unwrap();
let batch = Batch {
id: state.next_batch_id,
requests,
size: size as u32,
max_sequence_length,
};
state.next_batch_start_id = last_id + 1;
state.next_batch_id += 1;

View File

@ -1,22 +1,35 @@
use bloom_inference_client::ShardedClient;
use poem;
use poem::listener::TcpListener;
use std::time::Duration;
use tokenizers::Tokenizer;
mod server;
mod validation;
use validation::Validation;
mod db;
use db::Db;
mod batcher;
use batcher::Batcher;
#[tokio::main]
async fn main() -> Result<(), std::io::Error> {
fn main() -> Result<(), std::io::Error> {
let tokenizer = Tokenizer::from_pretrained("bigscience/bloom", None).unwrap();
tokio::runtime::Builder::new_multi_thread()
.enable_all()
.build()
.unwrap()
.block_on(async {
tracing_subscriber::fmt::init();
let sharded_client =
ShardedClient::connect_uds("/tmp/bloom-inference-0".to_string(), Duration::from_secs(5))
let sharded_client = ShardedClient::connect_uds(
"/tmp/bloom-inference-0".to_string(),
Duration::from_secs(5),
)
.await;
sharded_client
.clear_cache()
@ -27,5 +40,6 @@ async fn main() -> Result<(), std::io::Error> {
let addr = "127.0.0.1:3000".to_string();
let listener = TcpListener::bind(addr);
server::run(sharded_client, listener).await
server::run(sharded_client, tokenizer, listener).await
})
}

View File

@ -1,12 +1,13 @@
use poem::{EndpointExt, handler, post, Route, Server};
use crate::{Batcher, ShardedClient, Validation};
use poem::http::StatusCode;
use poem::listener::TcpListener;
use poem::middleware::AddData;
use poem::web::{Data, Json};
use tokio::time::Instant;
use crate::{Batcher, ShardedClient};
use tracing::instrument;
use poem::{handler, post, EndpointExt, Route, Server};
use serde::Deserialize;
use tokenizers::Tokenizer;
use tokio::time::Instant;
use tracing::instrument;
#[derive(Clone, Debug, Deserialize)]
pub(crate) struct GenerateParameters {
@ -59,21 +60,24 @@ pub(crate) struct GenerateRequest {
pub parameters: GenerateParameters,
}
#[handler]
#[instrument(skip(infer), fields(time, time_per_token))]
#[instrument(skip(validation, infer), fields(time, time_per_token))]
async fn generate(
validation: Data<&Validation>,
infer: Data<&Batcher>,
req: Json<GenerateRequest>,
) -> poem::Result<Json<serde_json::Value>> {
let start = Instant::now();
let output = infer
.infer(GenerateRequest {
let (input_length, validated_request) = validation
.validate(GenerateRequest {
inputs: req.inputs.clone(),
parameters: req.parameters.clone(),
})
.await;
.await
.unwrap();
let output = infer.infer(input_length, validated_request).await;
match output {
Ok(generated_text) => {
@ -92,20 +96,22 @@ async fn generate(
}
}
pub async fn run(client: ShardedClient, listener: TcpListener<String>) -> Result<(), std::io::Error> {
client
.clear_cache()
.await
.expect("Unable to clear cache");
pub async fn run(
client: ShardedClient,
tokenizer: Tokenizer,
listener: TcpListener<String>,
) -> Result<(), std::io::Error> {
client.clear_cache().await.expect("Unable to clear cache");
tracing::info!("Connected");
let infer = Batcher::new(client);
let validation = Validation::new(tokenizer);
let app = Route::new()
.at("/generate", post(generate))
.with(AddData::new(validation))
.with(AddData::new(infer));
Server::new(listener)
.run(app)
.await
Server::new(listener).run(app).await
}

65
router/src/validation.rs Normal file
View File

@ -0,0 +1,65 @@
use crate::server::GenerateRequest;
use tokenizers::tokenizer::Tokenizer;
use tokio::sync::{mpsc, oneshot};
#[derive(Debug)]
pub struct ValidationError {}
type ValidationRequest = (
GenerateRequest,
oneshot::Sender<Result<(usize, GenerateRequest), ValidationError>>,
);
#[derive(Debug, Clone)]
pub(crate) struct Validation {
sender: mpsc::Sender<ValidationRequest>,
}
impl Validation {
pub(crate) fn new(tokenizer: Tokenizer) -> Self {
let (validation_sender, validation_receiver) = mpsc::channel(128);
tokio::spawn(validation_task(tokenizer, validation_receiver));
Self {
sender: validation_sender,
}
}
pub(crate) async fn validate(
&self,
request: GenerateRequest,
) -> Result<(usize, GenerateRequest), ValidationError> {
let (sender, receiver) = oneshot::channel();
self.sender.send((request, sender)).await.unwrap();
receiver.await.unwrap()
}
}
async fn validation_task(tokenizer: Tokenizer, mut receiver: mpsc::Receiver<ValidationRequest>) {
while let Some((request, response_tx)) = receiver.recv().await {
if request.parameters.temperature < 0.0 {
response_tx.send(Err(ValidationError {})).unwrap_or(());
continue;
}
if request.parameters.top_p <= 0.0 || request.parameters.top_p > 1.0 {
response_tx.send(Err(ValidationError {})).unwrap_or(());
continue;
}
if request.parameters.max_new_tokens > 512 {
response_tx.send(Err(ValidationError {})).unwrap_or(());
continue;
}
let inputs = tokenizer.encode(request.inputs.clone(), false).unwrap();
let input_length = inputs.len();
if input_length > 512 {
response_tx.send(Err(ValidationError {})).unwrap_or(());
continue;
}
response_tx.send(Ok((input_length, request))).unwrap_or(());
}
println!("drop here");
}

View File

@ -1,44 +1,19 @@
import torch
from dataclasses import dataclass
from typing import Dict, Optional, List
from bloom_inference.pb import generate_pb2
from bloom_inference.utils import NextTokenChooser, StoppingCriteria
@dataclass
class CacheEntry:
batch_id: int
request_ids: List[int]
input_ids: Dict[str, torch.Tensor]
all_input_ids: List[torch.Tensor]
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
def __len__(self):
return len(self.request_ids)
def to_pb(self):
return generate_pb2.CacheEntry(
id=self.batch_id,
request_ids=self.request_ids,
sequence_length=max(len(entry) for entry in self.all_input_ids),
)
from bloom_inference.model import Batch
from typing import Dict, Optional
class Cache:
def __init__(self):
self.cache: Dict[str, CacheEntry] = {}
self.cache: Dict[int, Batch] = {}
def pop(self, batch_id: str) -> Optional[CacheEntry]:
def pop(self, batch_id: int) -> Optional[Batch]:
return self.cache.pop(batch_id, None)
def set(self, entry: CacheEntry):
def set(self, entry: Batch):
if entry is not None:
self.cache[entry.batch_id] = entry
def delete(self, batch_id: str):
def delete(self, batch_id: int):
del self.cache[batch_id]
def clear(self):

View File

@ -8,7 +8,6 @@ from typing import List, Tuple, Optional, Dict
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers.modeling_utils import no_init_weights
from bloom_inference.cache import CacheEntry
from bloom_inference.pb import generate_pb2
from bloom_inference.shard_model import shard_model, match_suffix
from bloom_inference.utils import (
@ -24,25 +23,35 @@ torch.manual_seed(0)
@dataclass
class Batch:
batch_id: int
request_ids: List[int]
requests: List[generate_pb2.Request]
input_ids: Dict[str, torch.Tensor]
all_input_ids: List[torch.Tensor]
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
size: int
max_sequence_length: int
def to_pb(self):
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
max_sequence_length=self.max_sequence_length,
)
@classmethod
def from_batch_pb(
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
) -> "Batch":
request_ids = []
inputs = []
next_token_choosers = []
stopping_criterias = []
input_lengths = []
# Parse batch
for r in pb.requests:
request_ids.append(r.id)
inputs.append(r.inputs)
input_lengths.append(r.input_length)
next_token_choosers.append(
NextTokenChooser(
temperature=r.parameters.temperature,
@ -54,94 +63,93 @@ class Batch:
stopping_criterias.append(StoppingCriteria(max_new_tokens=r.max_new_tokens))
input_ids = tokenizer(inputs, return_tensors="pt", padding=True).to(device)
all_input_ids = input_ids["input_ids"].unsqueeze(-1)
# Remove padding from all_input_ids
all_input_ids = [
input_ids.squeeze(0)[-length:].unsqueeze(-1)
for length, input_ids in zip(
input_lengths, input_ids["input_ids"].split(1, dim=0)
)
]
return cls(
pb.id,
request_ids,
input_ids,
all_input_ids,
next_token_choosers,
stopping_criterias,
batch_id=pb.id,
requests=pb.requests,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=pb.size,
max_sequence_length=pb.max_sequence_length,
)
@classmethod
def from_cache_entry(cls, cache_entry: CacheEntry) -> "Batch":
return cls(
cache_entry.batch_id,
cache_entry.request_ids,
cache_entry.input_ids,
cache_entry.all_input_ids,
cache_entry.next_token_choosers,
cache_entry.stopping_criterias,
)
def concatenate(cls, batches: List["Batch"]) -> "Batch":
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_sequence_length = max(batch.max_sequence_length for batch in batches)
@classmethod
def from_batch_cached_pb(cls, pb: generate_pb2.BatchCached, cache) -> "Batch":
if len(pb.batch_cached_ids) == 1:
cache_entry = cache.pop(pb.batch_cached_ids[0])
if cache_entry is None:
raise ValueError(f"Batch ID {pb.batch_id} not found in cache")
return cls.from_cache_entry(cache_entry)
total_batch_size = pb.total_batch_size
max_sequence_length = pb.max_sequence_length
# Batch attributes
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
request_ids = []
requests = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch_id in enumerate(pb.batch_cached_ids):
cache_entry = cache.pop(batch_id)
if cache_entry is None:
raise ValueError(f"Batch ID {batch_id} not found in cache")
request_ids.extend(cache_entry.request_ids)
all_input_ids.extend(cache_entry.all_input_ids)
next_token_choosers.extend(cache_entry.next_token_choosers)
stopping_criterias.extend(cache_entry.stopping_criterias)
for i, batch in enumerate(batches):
requests.extend(batch.requests)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
batch_size = len(cache_entry.request_ids)
end_index = start_index + batch_size
sequence_length = max(len(entry) for entry in cache_entry.all_input_ids)
# Slicing end index for this batch
end_index = start_index + batch.size
if input_ids["input_ids"] is None:
# We only concatenate batches that did at least one step
if batch.input_ids["input_ids"].shape[1] > 1:
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
# Initialize tensors
if i == 0:
input_ids["input_ids"] = torch.empty(
(total_batch_size, 1),
dtype=cache_entry.input_ids["input_ids"].dtype,
device=cache_entry.input_ids["input_ids"].device,
dtype=batch.input_ids["input_ids"].dtype,
device=batch.input_ids["input_ids"].device,
)
input_ids["input_ids"][start_index:end_index] = cache_entry.input_ids[
"input_ids"
]
if input_ids["attention_mask"] is None:
input_ids["attention_mask"] = torch.zeros(
(total_batch_size, max_sequence_length),
dtype=cache_entry.input_ids["attention_mask"].dtype,
device=cache_entry.input_ids["attention_mask"].device,
dtype=batch.input_ids["attention_mask"].dtype,
device=batch.input_ids["attention_mask"].device,
)
input_ids["attention_mask"][
start_index:end_index, -sequence_length:
] = cache_entry.input_ids["attention_mask"][:, -sequence_length:]
# input_ids["input_ids"] is always of shape [batch_size, 1]
# We do not need to pad it
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
for j, past in enumerate(cache_entry.input_ids["past_key_values"]):
# TODO: this could be done without the views by using indices
# We need to slice the attention mask to remove padding from previous steps
input_ids["attention_mask"][
start_index:end_index, -batch.max_sequence_length :
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length :]
for j, past in enumerate(batch.input_ids["past_key_values"]):
past_keys = past[0]
past_values = past[1]
_, head_dim, padded_sequence_length = past_keys.shape
# Reshape the tensors to make slicing easier
past_keys = past_keys.view(
batch_size, -1, head_dim, padded_sequence_length
batch.size, -1, head_dim, padded_sequence_length
)
past_values = past_values.view(
batch_size, -1, padded_sequence_length, head_dim
batch.size, -1, padded_sequence_length, head_dim
)
num_heads = past_keys.shape[1]
# Initialize tensors
# This will run only once per layer
if j == len(input_ids["past_key_values"]):
padded_past_keys = torch.zeros(
(
@ -167,15 +175,17 @@ class Batch:
[padded_past_keys, padded_past_values]
)
# We slice the past keys and values to remove the padding from previous batches
input_ids["past_key_values"][j][0][
start_index:end_index, :, :, -(sequence_length - 1):
] = past_keys[:, :, :, -(sequence_length - 1):]
start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
input_ids["past_key_values"][j][1][
start_index:end_index, :, -(sequence_length - 1):, :
] = past_values[:, :, -(sequence_length - 1):, :]
start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
if (i + 1) == len(pb.batch_cached_ids):
# If we are on the last batch, we need to reshape the tensors
if (i + 1) == len(batches):
input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
j
][0].view(total_batch_size * num_heads, head_dim, -1)
@ -183,27 +193,27 @@ class Batch:
j
][1].view(total_batch_size * num_heads, -1, head_dim)
start_index += batch_size
assert pb.request_ids == request_ids
start_index += batch.size
return cls(
pb.id,
request_ids,
input_ids,
all_input_ids,
next_token_choosers,
stopping_criterias,
batch_id=batches[0].batch_id,
requests=requests,
input_ids=input_ids,
all_input_ids=all_input_ids,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_sequence_length=max_sequence_length,
)
@dataclass
class FinishedGeneration:
request_id: str
class GeneratedText:
request: generate_pb2.Request
output: str
def to_pb(self) -> generate_pb2.FinishedGeneration:
return generate_pb2.FinishedGeneration(id=self.request_id, output=self.output)
def to_pb(self) -> generate_pb2.GeneratedText:
return generate_pb2.GeneratedText(request=self.request, output=self.output)
class BLOOM:
@ -230,24 +240,27 @@ class BLOOM:
def generate_token(
self, batch: Batch
) -> Tuple[List[FinishedGeneration], Optional[CacheEntry]]:
) -> Tuple[List[GeneratedText], Optional[Batch]]:
with torch.no_grad():
outputs = self.forward(**batch.input_ids)
# List of indices to cache
cache_indices = []
cache_past_indices = []
next_batch_keep_indices = []
next_batch_past_keep_indices = []
# New input_ids for next forward; keep in cache
cache_next_input_ids = []
cache_all_input_ids = []
# New input_ids for next forward
next_batch_input_ids = []
next_batch_all_input_ids = []
next_batch_size = 0
next_batch_max_sequence_length = 0
# Finished requests
finished_generations: List[FinishedGeneration] = []
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.request_ids,
batch.requests,
outputs.logits,
batch.next_token_choosers,
batch.stopping_criterias,
@ -256,7 +269,7 @@ class BLOOM:
# For each member of the batch
for i, (
request_id,
request,
logits,
next_token_chooser,
stopping_criteria,
@ -274,64 +287,75 @@ class BLOOM:
output = self.tokenizer.decode(
all_tokens.squeeze(-1), skip_special_tokens=True
)
# Add to the list of finished generations with the original request id
finished_generations.append(FinishedGeneration(request_id, output))
# must be added to the cache
# Add to the list of finished generations with the original request
generated_texts.append(GeneratedText(request, output))
# add to the next batch
else:
cache_indices.append(i)
cache_past_indices.extend([j for j in range(i * self.num_heads, (i + 1) * self.num_heads)])
cache_next_input_ids.append(next_token)
cache_all_input_ids.append(all_tokens)
next_batch_keep_indices.append(i)
# past_key_values is of shape [batch_size * num_heads, ...]
# so we need to take into account the `num_heads` stride here
next_batch_past_keep_indices.extend(
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
)
next_batch_input_ids.append(next_token)
next_batch_all_input_ids.append(all_tokens)
next_batch_size += 1
next_batch_max_sequence_length = max(
next_batch_max_sequence_length, len(all_tokens)
)
# No cache is needed, we finished all generations in the batch
if not cache_indices:
return finished_generations, None
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
# If we finished at least one generation
cache_input_ids = {"input_ids": torch.cat(cache_next_input_ids, dim=0)}
if finished_generations:
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
if generated_texts:
# Apply indices to attention mask, past key values and other items that need to be cached
cache_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
cache_indices
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
next_batch_keep_indices
]
cache_input_ids["past_key_values"] = [
(keys[cache_past_indices], values[cache_past_indices])
next_batch_input_ids["past_key_values"] = [
(
keys[next_batch_past_keep_indices],
values[next_batch_past_keep_indices],
)
for keys, values in outputs["past_key_values"]
]
cache_request_ids = [batch.request_ids[i] for i in cache_indices]
cache_next_token_choosers = [
batch.next_token_choosers[i] for i in cache_indices
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
cache_stopping_criterias = [
batch.stopping_criterias[i] for i in cache_indices
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
cache_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
cache_input_ids["past_key_values"] = outputs["past_key_values"]
cache_request_ids = batch.request_ids
cache_next_token_choosers = batch.next_token_choosers
cache_stopping_criterias = batch.stopping_criterias
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
cache_input_ids["attention_mask"] = torch.cat(
next_batch_input_ids["attention_mask"] = torch.cat(
[
cache_input_ids["attention_mask"],
torch.ones((cache_input_ids["attention_mask"].shape[0], 1)).to(
cache_input_ids["attention_mask"].device
),
next_batch_input_ids["attention_mask"],
torch.ones((next_batch_size, 1)).to(self.device),
],
dim=1,
)
cache_entry = CacheEntry(
batch.batch_id,
cache_request_ids,
cache_input_ids,
cache_all_input_ids,
cache_next_token_choosers,
cache_stopping_criterias,
next_batch = Batch(
batch_id=batch.batch_id,
requests=next_batch_requests,
input_ids=next_batch_input_ids,
all_input_ids=next_batch_all_input_ids,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_sequence_length=next_batch_max_sequence_length,
)
return finished_generations, cache_entry
return generated_texts, next_batch
class BLOOMSharded(BLOOM):

View File

@ -10,7 +10,7 @@ from bloom_inference.model import BLOOM, Batch, BLOOMSharded
from bloom_inference.pb import generate_pb2_grpc, generate_pb2
class TextGeneration(generate_pb2_grpc.TextGenerationServicer):
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
def __init__(self, model: BLOOM, cache: Cache, server_urls: List[str]):
self.cache = cache
self.model = model
@ -21,32 +21,90 @@ class TextGeneration(generate_pb2_grpc.TextGenerationServicer):
async def ClearCache(self, request, context):
self.cache.clear()
return generate_pb2.Empty()
return generate_pb2.ClearCacheResponse()
async def Generate(self, request, context):
batch = Batch.from_batch_pb(request, self.model.tokenizer, self.model.device)
finished_generations, cache_entry = self.model.generate_token(batch)
self.cache.set(cache_entry)
batch = Batch.from_pb(request.batch, self.model.tokenizer, self.model.device)
return generate_pb2.Response(
finished=[
finished_generation.to_pb()
for finished_generation in finished_generations
generated_texts, next_batch = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.GenerateResponse(
generated_texts=[
generated_text.to_pb() for generated_text in generated_texts
],
cache_entry=cache_entry.to_pb() if cache_entry else None,
batch=next_batch.to_pb() if next_batch else None,
)
async def GenerateWithCache(self, request, context):
batch = Batch.from_batch_cached_pb(request, self.cache)
finished_generations, cache_entry = self.model.generate_token(batch)
self.cache.set(cache_entry)
if len(request.batches) == 0:
raise ValueError("Must provide at least one batch")
return generate_pb2.Response(
finished=[
finished_generation.to_pb()
for finished_generation in finished_generations
batches = []
for batch_pb in request.batches:
batch = self.cache.pop(batch_pb.id)
if batch is None:
raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
batches.append(batch)
if len(batches) > 1:
batch = Batch.concatenate(batches)
else:
batch = batches[0]
generated_texts, next_batch = self.model.generate_token(batch)
self.cache.set(next_batch)
return generate_pb2.GenerateWithCacheResponse(
generated_texts=[
generated_text.to_pb() for generated_text in generated_texts
],
cache_entry=cache_entry.to_pb() if cache_entry else None,
batch=next_batch.to_pb() if next_batch else None,
)
async def GenerateUntilFinished(self, request, context):
batch = Batch.from_pb(request.batch, self.model.tokenizer, self.model.device)
generated_texts = []
while not generated_texts:
generated_texts, next_batch = self.model.generate_token(batch)
batch = next_batch
self.cache.set(next_batch)
return generate_pb2.GenerateUntilFinishedResponse(
generated_texts=[
generated_text.to_pb() for generated_text in generated_texts
],
batch=next_batch.to_pb() if next_batch else None,
)
async def GenerateUntilFinishedWithCache(self, request, context):
if len(request.batches) == 0:
raise ValueError("Must provide at least one batch")
batches = []
for batch_pb in request.batches:
batch = self.cache.pop(batch_pb.id)
if batch is None:
raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
batches.append(batch)
if len(batches) > 1:
batch = Batch.concatenate(batches)
else:
batch = batches[0]
generated_texts = []
while not generated_texts:
generated_texts, next_batch = self.model.generate_token(batch)
batch = next_batch
self.cache.set(next_batch)
return generate_pb2.GenerateUntilFinishedWithCacheResponse(
generated_texts=[
generated_text.to_pb() for generated_text in generated_texts
],
batch=next_batch.to_pb() if next_batch else None,
)
@ -71,11 +129,11 @@ def serve(model_name, sharded, shard_directory):
server_urls = [local_url]
server = aio.server()
generate_pb2_grpc.add_TextGenerationServicer_to_server(
TextGeneration(model, Cache(), server_urls), server
generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
TextGenerationService(model, Cache(), server_urls), server
)
SERVICE_NAMES = (
generate_pb2.DESCRIPTOR.services_by_name["TextGeneration"].full_name,
generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
reflection.SERVICE_NAME,
)
reflection.enable_server_reflection(SERVICE_NAMES, server)