working setup of the ffi layer
This commit is contained in:
parent
5aede911f8
commit
50e9fc89c8
|
@ -5,8 +5,10 @@
|
|||
#ifndef TGI_TRTLLM_BACKEND_H
|
||||
#define TGI_TRTLLM_BACKEND_H
|
||||
|
||||
#include <cmath>
|
||||
#include <filesystem>
|
||||
#include <span>
|
||||
#include <vector>
|
||||
|
||||
#include <spdlog/fmt/fmt.h>
|
||||
#include <nlohmann/json.hpp>
|
||||
|
@ -19,7 +21,8 @@ using json = nlohmann::json;
|
|||
namespace tle = tensorrt_llm::executor;
|
||||
|
||||
namespace huggingface::tgi::backends {
|
||||
|
||||
using RequestId = tle::IdType;
|
||||
using TokenId = tle::TokenIdType;
|
||||
using TokenStreamingCallback = void(tle::TokenIdType);
|
||||
|
||||
/**
|
||||
|
@ -54,9 +57,7 @@ namespace huggingface::tgi::backends {
|
|||
* Indicate if the backend is ready to accept incoming request
|
||||
* @return true if ready, false otherwise
|
||||
*/
|
||||
[[nodiscard]] bool IsReady() const {
|
||||
return executor.canEnqueueRequests();
|
||||
}
|
||||
[[nodiscard]] bool IsReady() const;
|
||||
|
||||
/***
|
||||
* Submit a new generation task to the executor
|
||||
|
@ -65,26 +66,25 @@ namespace huggingface::tgi::backends {
|
|||
* @param topK
|
||||
* @param topP
|
||||
* @param temperature
|
||||
* @param minLength
|
||||
* @param repetitionPenalty
|
||||
* @param frequencyPenalty
|
||||
* @param seed
|
||||
* @param nTopTokens
|
||||
* @return Request id related to this generation for reference
|
||||
*/
|
||||
[[nodiscard]] tle::IdType Submit(
|
||||
const std::vector<tle::TokenIdType> &tokens,
|
||||
[[nodiscard]] RequestId Submit(
|
||||
const std::vector<TokenId> &tokens,
|
||||
int32_t maxNewTokens,
|
||||
int32_t topK,
|
||||
float_t topP,
|
||||
float_t temperature,
|
||||
int32_t minLength,
|
||||
std::optional<float_t> repetitionPenalty = std::nullopt,
|
||||
std::optional<float_t> frequencyPenalty = std::nullopt,
|
||||
std::optional<uint32_t> seed = std::nullopt,
|
||||
std::optional<uint32_t> nTopTokens = std::nullopt
|
||||
uint64_t seed
|
||||
);
|
||||
|
||||
/***
|
||||
*
|
||||
* @param requestId The request id to poll the generation results
|
||||
* @return
|
||||
*/
|
||||
std::vector<tle::Response> Poll(RequestId requestId);
|
||||
|
||||
/***
|
||||
* Unroll the token generation until end of stream is reached.
|
||||
* Every generated token is streamed back through the provided callback for further processing
|
||||
|
@ -92,7 +92,7 @@ namespace huggingface::tgi::backends {
|
|||
* @param cb The callback to stream token back
|
||||
* @return Global number of generated tokens for this request id
|
||||
*/
|
||||
size_t Stream(tle::IdType reqId, const std::function<TokenStreamingCallback> &cb);
|
||||
uint32_t Stream(RequestId reqId, std::function<TokenStreamingCallback> &cb);
|
||||
};
|
||||
}
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#include <fmt/std.h>
|
||||
#include <fstream>
|
||||
|
||||
#include <nvml.h>
|
||||
#include <spdlog/spdlog.h>
|
||||
|
||||
|
@ -17,15 +18,17 @@ tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &co
|
|||
// Get the compute capabilities of the current hardware
|
||||
nvmlDevice_t device;
|
||||
int32_t cudaComputeCapabilitiesMajor = 0, cudaComputeCapabilitiesMinor = 0;
|
||||
if(nvmlDeviceGetHandleByIndex_v2(0, &device) == NVML_SUCCESS) {
|
||||
if (nvmlDeviceGetHandleByIndex_v2(0, &device) == NVML_SUCCESS) {
|
||||
SPDLOG_DEBUG("Successfully acquired nvmlDevice_t = 0");
|
||||
if(nvmlDeviceGetCudaComputeCapability(device, &cudaComputeCapabilitiesMajor, &cudaComputeCapabilitiesMinor) == NVML_SUCCESS) {
|
||||
SPDLOG_INFO(FMT_STRING("Detected sm_{:d}{:d} compute capabilities"), cudaComputeCapabilitiesMajor, cudaComputeCapabilitiesMinor);
|
||||
if (nvmlDeviceGetCudaComputeCapability(device, &cudaComputeCapabilitiesMajor, &cudaComputeCapabilitiesMinor) ==
|
||||
NVML_SUCCESS) {
|
||||
SPDLOG_INFO(FMT_STRING("Detected sm_{:d}{:d} compute capabilities"), cudaComputeCapabilitiesMajor,
|
||||
cudaComputeCapabilitiesMinor);
|
||||
}
|
||||
}
|
||||
|
||||
// Single engine (TP = PP = 1) -> using leader mode (no MPI involved)
|
||||
if(config["/pretrained_config/mapping/world_size"_json_pointer].get<uint8_t>() == 1){
|
||||
if (config["/pretrained_config/mapping/world_size"_json_pointer].get<uint8_t>() == 1) {
|
||||
SPDLOG_INFO("Detected single engine deployment, using leader mode");
|
||||
execConfig.setParallelConfig(tle::ParallelConfig(
|
||||
tle::CommunicationType::kMPI,
|
||||
|
@ -54,15 +57,18 @@ tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &co
|
|||
huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
|
||||
const std::filesystem::path &enginesFolder,
|
||||
const std::filesystem::path &executorWorker
|
||||
):
|
||||
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
|
||||
executor(
|
||||
enginesFolder,
|
||||
tensorrt_llm::executor::ModelType::kDECODER_ONLY,
|
||||
GetExecutorConfig(config, executorWorker.string()
|
||||
))
|
||||
{
|
||||
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref<const std::string&>());
|
||||
) :
|
||||
config(json::parse(std::ifstream(enginesFolder / "config.json"))),
|
||||
executor(
|
||||
enginesFolder,
|
||||
tensorrt_llm::executor::ModelType::kDECODER_ONLY,
|
||||
GetExecutorConfig(config, executorWorker.string()
|
||||
)) {
|
||||
SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get_ref<const std::string &>());
|
||||
}
|
||||
|
||||
bool huggingface::tgi::backends::TensorRtLlmBackend::IsReady() const {
|
||||
return executor.canEnqueueRequests();
|
||||
}
|
||||
|
||||
[[nodiscard("Returned request id needs to be provided back to gather generated tokens")]]
|
||||
|
@ -72,11 +78,7 @@ tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
|
|||
const int32_t topK,
|
||||
const float_t topP,
|
||||
const float_t temperature,
|
||||
const int32_t minLength,
|
||||
std::optional<float_t> repetitionPenalty,
|
||||
std::optional<float_t> frequencyPenalty,
|
||||
std::optional<uint32_t> seed,
|
||||
std::optional<uint32_t> nTopTokens
|
||||
const uint64_t seed
|
||||
) {
|
||||
SPDLOG_DEBUG(
|
||||
FMT_STRING("Submitting inference over {:d} tokens to the executor ({:d} already in-flight)"),
|
||||
|
@ -92,27 +94,23 @@ tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
|
|||
std::nullopt,
|
||||
std::nullopt,
|
||||
seed,
|
||||
std::nullopt,
|
||||
temperature,
|
||||
minLength,
|
||||
std::nullopt,
|
||||
repetitionPenalty,
|
||||
std::nullopt,
|
||||
frequencyPenalty,
|
||||
};
|
||||
const auto output = tle::OutputConfig{false, false, nTopTokens.value_or(1) > 1};
|
||||
const auto request = tle::Request{tokens, maxNewTokens, true, sampling, output};
|
||||
|
||||
return executor.enqueueRequest(request);
|
||||
const auto output = tle::OutputConfig{false, false, false};
|
||||
return executor.enqueueRequest(tle::Request{tokens, maxNewTokens, true, sampling, output});
|
||||
}
|
||||
|
||||
size_t huggingface::tgi::backends::TensorRtLlmBackend::Stream(const tle::IdType reqId, const std::function<TokenStreamingCallback>& cb) {
|
||||
uint32_t huggingface::tgi::backends::TensorRtLlmBackend::Stream(const tle::IdType reqId,
|
||||
std::function<TokenStreamingCallback> &cb) {
|
||||
bool isFinal = false;
|
||||
size_t generatedTokens = 0;
|
||||
|
||||
do {
|
||||
const auto responses = executor.awaitResponses(reqId);
|
||||
for (const auto &response: responses){
|
||||
if(response.hasError()) {
|
||||
for (const auto &response: responses) {
|
||||
if (response.hasError()) {
|
||||
SPDLOG_WARN("Caught error during generation: {}", response.getErrorMsg());
|
||||
isFinal = true;
|
||||
} else {
|
||||
|
@ -128,8 +126,12 @@ size_t huggingface::tgi::backends::TensorRtLlmBackend::Stream(const tle::IdType
|
|||
}
|
||||
}
|
||||
|
||||
} while(!isFinal);
|
||||
} while (!isFinal);
|
||||
|
||||
// Return the number of generated tokens
|
||||
return generatedTokens;
|
||||
}
|
||||
|
||||
std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::Poll(const tle::IdType requestId) {
|
||||
return executor.awaitResponses(requestId);
|
||||
}
|
||||
|
|
|
@ -1,20 +1,24 @@
|
|||
use std::cell::RefCell;
|
||||
use std::path::Path;
|
||||
|
||||
use async_trait::async_trait;
|
||||
use cxx::UniquePtr;
|
||||
use tokenizers::Tokenizer;
|
||||
use tokio::sync::mpsc;
|
||||
use tokio::time::Instant;
|
||||
use tokio_stream::wrappers::UnboundedReceiverStream;
|
||||
|
||||
use text_generation_router::infer::{Backend, InferError, InferStreamResponse};
|
||||
use text_generation_router::validation::ValidGenerateRequest;
|
||||
use text_generation_router::validation::{Chunk, ValidGenerateRequest};
|
||||
|
||||
use crate::errors::TensorRtLlmBackendError;
|
||||
use crate::ffi::{create_trtllm_backend, TensorRtLlmBackend};
|
||||
use crate::ffi::{create_trtllm_backend, TensorRtLlmBackendImpl};
|
||||
|
||||
struct GenerationContext(mpsc::UnboundedSender<Result<InferStreamResponse, InferError>>);
|
||||
|
||||
pub struct TrtLLmBackend {
|
||||
tokenizer: Tokenizer,
|
||||
inner: UniquePtr<TensorRtLlmBackend>,
|
||||
inner: RefCell<UniquePtr<TensorRtLlmBackendImpl>>,
|
||||
}
|
||||
|
||||
unsafe impl Sync for TrtLLmBackend {}
|
||||
|
@ -26,9 +30,12 @@ impl TrtLLmBackend {
|
|||
engine_folder: P,
|
||||
) -> Result<Self, TensorRtLlmBackendError> {
|
||||
let engine_folder = engine_folder.as_ref();
|
||||
let inner = create_trtllm_backend(engine_folder.to_str().unwrap());
|
||||
let inner = create_trtllm_backend(engine_folder.to_str().unwrap(), "");
|
||||
|
||||
Ok(Self { tokenizer, inner })
|
||||
Ok(Self {
|
||||
tokenizer,
|
||||
inner: RefCell::new(inner),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -39,12 +46,91 @@ impl Backend for TrtLLmBackend {
|
|||
request: ValidGenerateRequest,
|
||||
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
|
||||
let (sender, receiver) = mpsc::unbounded_channel();
|
||||
let request_id = self.inner.submit();
|
||||
let ctx = Box::new(GenerationContext(sender));
|
||||
|
||||
// Unpack parameters
|
||||
let params = request.parameters;
|
||||
|
||||
// Currently we handle single chunk of text
|
||||
if request.inputs.len() == 1 {
|
||||
match request
|
||||
.inputs
|
||||
.first()
|
||||
.expect("Failed to access the first chunk")
|
||||
{
|
||||
Chunk::Text(text) => {
|
||||
let encoding = self
|
||||
.tokenizer
|
||||
.encode(&**text, true)
|
||||
.map_err(|e| InferError::ToolError(e.to_string()))?;
|
||||
|
||||
let _start = Instant::now();
|
||||
let _request_id = self
|
||||
.inner
|
||||
.borrow_mut()
|
||||
.as_mut()
|
||||
.expect("Failed to retrieve pointer to TRTLLM backend")
|
||||
.submit(
|
||||
encoding.get_ids(),
|
||||
128,
|
||||
params.top_k as i32,
|
||||
params.top_p,
|
||||
params.temperature,
|
||||
params.seed,
|
||||
);
|
||||
|
||||
// spawn_blocking(|| {
|
||||
// // Stream generated tokens
|
||||
// let num_generated_tokens = self
|
||||
// .inner
|
||||
// .borrow_mut()
|
||||
// .as_mut()
|
||||
// .expect("Failed to retrieve pointer to TRTLLM backend")
|
||||
// .stream(request_id, ctx, |token, step, is_final| {
|
||||
// // self.tokenizer.decode(&*[token], true).unwrap();
|
||||
// let token = Token {
|
||||
// id: token,
|
||||
// text: String::from(""),
|
||||
// logprob: 1.0f32,
|
||||
// special: false,
|
||||
// };
|
||||
//
|
||||
// sender
|
||||
// .send(Ok(InferStreamResponse::Intermediate {
|
||||
// token,
|
||||
// top_tokens: vec![],
|
||||
// }))
|
||||
// .unwrap()
|
||||
// });
|
||||
//
|
||||
// // Notify the end
|
||||
// Ok(InferStreamResponse::End {
|
||||
// token: Token {
|
||||
// id: 0,
|
||||
// text: String::from(""),
|
||||
// logprob: 1.0f32,
|
||||
// special: false,
|
||||
// },
|
||||
// top_tokens: vec![],
|
||||
// generated_text: GeneratedText {
|
||||
// text: String::from(""),
|
||||
// generated_tokens: num_generated_tokens,
|
||||
// finish_reason: FinishReason::EndOfSequenceToken,
|
||||
// seed: Some(params.seed),
|
||||
// },
|
||||
// start,
|
||||
// queued: Instant::now(),
|
||||
// })
|
||||
// });
|
||||
}
|
||||
Chunk::Image(_) => {}
|
||||
}
|
||||
};
|
||||
|
||||
Ok(UnboundedReceiverStream::new(receiver))
|
||||
}
|
||||
|
||||
async fn health(&self, _current_health: bool) -> bool {
|
||||
self.inner.is_ready()
|
||||
self.inner.borrow_mut().is_ready()
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,23 +1,99 @@
|
|||
//
|
||||
// Created by mfuntowicz on 6/30/24.
|
||||
//
|
||||
#include <filesystem>
|
||||
#include "rust/cxx.h"
|
||||
#pragma once
|
||||
|
||||
#include <cmath>
|
||||
#include <filesystem>
|
||||
#include <vector>
|
||||
|
||||
#include "rust/cxx.h"
|
||||
#include "backends/trtllm/include/backend.h"
|
||||
|
||||
namespace huggingface::tgi::backends {
|
||||
class TensorRtLlmBackendImpl : TensorRtLlmBackend {
|
||||
public:
|
||||
/***
|
||||
*
|
||||
* @param engineFolder
|
||||
* @param executorWorker
|
||||
*/
|
||||
TensorRtLlmBackendImpl(const std::string_view &engineFolder, const std::string_view &executorWorker) :
|
||||
TensorRtLlmBackend(std::move(engineFolder), std::move(executorWorker)) {}
|
||||
|
||||
/***
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
bool IsReady() const { return TensorRtLlmBackend::IsReady(); }
|
||||
|
||||
/***
|
||||
*
|
||||
* @param tokens
|
||||
* @param maxNewTokens
|
||||
* @param topK
|
||||
* @param topP
|
||||
* @param temperature
|
||||
* @param seed
|
||||
* @return
|
||||
*/
|
||||
[[nodiscard("returned request id should be used to refer to the request's generation result later on")]]
|
||||
RequestId Submit(rust::Slice<const uint32_t> tokens,
|
||||
int32_t maxNewTokens,
|
||||
int32_t topK,
|
||||
float_t topP,
|
||||
float_t temperature,
|
||||
uint64_t seed) {
|
||||
// This will copy all the items from the initial slice
|
||||
std::vector<int32_t> tokens_(tokens.size());
|
||||
tokens_.assign(tokens.begin(), tokens.end());
|
||||
|
||||
return TensorRtLlmBackend::Submit(std::move(tokens_), maxNewTokens, topK, topP, temperature, seed);
|
||||
}
|
||||
|
||||
/***
|
||||
*
|
||||
* @param requestId
|
||||
* @param handler
|
||||
* @return
|
||||
*/
|
||||
// uint32_t
|
||||
// Stream(RequestId requestId, rust::Box <GenerationContext>, rust::Fn<void(uint32_t, uint32_t, bool)> handler) {
|
||||
// bool isDone = false;
|
||||
// uint32_t numGeneratedTokens = 0;
|
||||
//
|
||||
// do {
|
||||
// const auto responses = Poll(requestId);
|
||||
// for (const auto &response: responses) {
|
||||
// if (response.hasError()) {
|
||||
// isDone = true;
|
||||
// // TODO : bubble up the error to rust
|
||||
// } else {
|
||||
// const auto generation = response.getResult();
|
||||
// const auto token = generation.outputTokenIds[0][0];
|
||||
// isDone = generation.isFinal;
|
||||
//
|
||||
// // Propagate through the handler
|
||||
// handler(token, numGeneratedTokens, isDone);
|
||||
// }
|
||||
// }
|
||||
// } while (!isDone);
|
||||
//
|
||||
// return numGeneratedTokens;
|
||||
// }
|
||||
};
|
||||
|
||||
/***
|
||||
*
|
||||
* @param engineFolder
|
||||
* @return
|
||||
*/
|
||||
std::unique_ptr<TensorRtLlmBackend> create_trtllm_backend(rust::Str engineFolder, rust::Str executorWorker) {
|
||||
std::unique_ptr<TensorRtLlmBackendImpl> create_trtllm_backend(rust::Str engineFolder, rust::Str executorWorker) {
|
||||
// Unconditionally call this to initialize and discover TRTLLM plugins
|
||||
InitializeBackend();
|
||||
|
||||
const auto enginePath = std::string_view(engineFolder.begin(), engineFolder.end());
|
||||
const auto executorPath = std::string_view(executorWorker.begin(), executorWorker.end());
|
||||
return std::make_unique<TensorRtLlmBackend>(std::move(enginePath), std::move(executorPath));
|
||||
return std::make_unique<TensorRtLlmBackendImpl>(std::move(enginePath), std::move(executorPath));
|
||||
}
|
||||
}
|
|
@ -8,7 +8,8 @@ mod ffi {
|
|||
unsafe extern "C++" {
|
||||
include!("backends/trtllm/src/ffi.cpp");
|
||||
|
||||
type TensorRtLlmBackend;
|
||||
/// Represent an instance of the underlying TensorRT-LLM backend
|
||||
type TensorRtLlmBackendImpl;
|
||||
|
||||
/// Create an instance backed behind an std::unique_ptr to manage the lifespan of the backend
|
||||
///
|
||||
|
@ -24,12 +25,31 @@ mod ffi {
|
|||
/// ```
|
||||
///
|
||||
/// ```
|
||||
fn create_trtllm_backend(engine_folder: &str, executor_worker: &str) -> UniquePtr<TensorRtLlmBackend>;
|
||||
fn create_trtllm_backend(
|
||||
engine_folder: &str,
|
||||
executor_worker: &str,
|
||||
) -> UniquePtr<TensorRtLlmBackendImpl>;
|
||||
|
||||
#[rust_name = "is_ready"]
|
||||
fn IsReady(&self) -> bool;
|
||||
fn IsReady(self: &TensorRtLlmBackendImpl) -> bool;
|
||||
|
||||
#[rust_name = "submit"]
|
||||
fn Submit(&self) -> u64;
|
||||
fn Submit(
|
||||
self: Pin<&mut TensorRtLlmBackendImpl>,
|
||||
tokens: &[u32],
|
||||
max_new_tokens: i32,
|
||||
top_k: i32,
|
||||
top_p: f32,
|
||||
temperature: f32,
|
||||
seed: u64,
|
||||
) -> u64;
|
||||
|
||||
// #[rust_name = "stream"]
|
||||
// fn Stream(
|
||||
// self: Pin<&mut TensorRtLlmBackendImpl>,
|
||||
// request_id: u64,
|
||||
// ctx: Box<GenerationContext>,
|
||||
// callback: fn(u32, u32, bool),
|
||||
// ) -> u32;
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue