Fix TGI issues with ROCm (#1921)

Not all models were tested in
https://github.com/huggingface/text-generation-inference/pull/1764.

Fixing some more issues (notably starcoder2) here, the full CI will come
shortly once we split `build.yml` in two
This commit is contained in:
fxmarty 2024-05-17 19:50:52 +02:00 committed by GitHub
parent b5f1c9de06
commit 5dad0c0b29
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 72 additions and 45 deletions

View File

@ -396,36 +396,38 @@ jobs:
label: ${{ needs.start-runner.outputs.label }}
ec2-instance-id: ${{ needs.start-runner.outputs.ec2-instance-id }}
integration-tests-rocm:
concurrency:
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
needs:
- start-runner
- build-and-push-image
- integration-tests
- build-and-push-image-rocm
- stop-runner
runs-on: [self-hosted, docker-gpu, amd-gpu, multi-gpu, mi300]
container:
image: registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ needs.build-and-push-image-rocm.outputs.short_sha }}-rocm
options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/cache
env:
DOCKER_VOLUME: /cache
steps:
- name: ROCM-SMI
run: |
rocm-smi
- name: ROCM-INFO
run: |
rocminfo | grep "Agent" -A 14
- name: Show ROCR environment
run: |
echo "ROCR: $ROCR_VISIBLE_DEVICES"
- name: Install
run: |
make install-integration-tests
- name: Run tests
run: |
export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
pytest -s -vv integration-tests
# TODO: Move this to `build_amd.yml` (and `build_nvidia.yml`)
# integration-tests-rocm:
# concurrency:
# group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
# cancel-in-progress: true
# needs:
# - start-runner
# - build-and-push-image
# - integration-tests
# - build-and-push-image-rocm
# - stop-runner
# runs-on: [self-hosted, amd-gpu, multi-gpu, mi300]
# container:
# image: registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ needs.build-and-push-image-rocm.outputs.short_sha }}-rocm
# options: --device /dev/kfd --device /dev/dri --env ROCR_VISIBLE_DEVICES --shm-size "16gb" --ipc host -v /mnt/cache/.cache/huggingface:/cache
# env:
# DOCKER_VOLUME: /cache
# steps:
# - name: ROCM-SMI
# run: |
# rocm-smi
# - name: ROCM-INFO
# run: |
# rocminfo | grep "Agent" -A 14
# - name: Show ROCR environment
# run: |
# echo "ROCR: $ROCR_VISIBLE_DEVICES"
# - name: Install
# run: |
# make install-integration-tests
# - name: Run tests
# run: |
# export HUGGING_FACE_HUB_TOKEN=${{ secrets.HUGGING_FACE_HUB_TOKEN }}
# pytest -s -vv integration-tests

View File

@ -79,12 +79,15 @@ try:
from text_generation_server.models.flash_phi import FlashPhi
from text_generation_server.models.flash_starcoder2 import FlashStarcoder2
from text_generation_server.models.flash_dbrx import FlashDbrx
from text_generation_server.utils.flash_attn import HAS_FLASH_ATTN_V2_CUDA
from text_generation_server.utils.flash_attn import (
HAS_FLASH_ATTN_V2_CUDA,
HAS_FLASH_ATTN_V2_ROCM,
)
except ImportError as e:
logger.warning(f"Could not import Flash Attention enabled models: {e}")
FLASH_ATTENTION = False
HAS_FLASH_ATTN_V2_CUDA = False
HAS_FLASH_ATTN_V2_ROCM = False
if FLASH_ATTENTION:
__all__.append(FlashGPT2)
@ -539,8 +542,10 @@ def get_model(
if model_type == "mistral":
sliding_window = config_dict.get("sliding_window", -1)
if (
(sliding_window is None or sliding_window == -1) and FLASH_ATTENTION
) or HAS_FLASH_ATTN_V2_CUDA:
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
or HAS_FLASH_ATTN_V2_CUDA
or HAS_FLASH_ATTN_V2_ROCM
):
return FlashMistral(
model_id,
revision,
@ -564,8 +569,10 @@ def get_model(
if model_type == "mixtral":
sliding_window = config_dict.get("sliding_window", -1)
if (
(sliding_window is None or sliding_window == -1) and FLASH_ATTENTION
) or HAS_FLASH_ATTN_V2_CUDA:
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
or HAS_FLASH_ATTN_V2_CUDA
or HAS_FLASH_ATTN_V2_ROCM
):
return FlashMixtral(
model_id,
revision,
@ -589,8 +596,10 @@ def get_model(
if model_type == "starcoder2":
sliding_window = config_dict.get("sliding_window", -1)
if (
(sliding_window is None or sliding_window == -1) and FLASH_ATTENTION
) or HAS_FLASH_ATTN_V2_CUDA:
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
or HAS_FLASH_ATTN_V2_CUDA
or HAS_FLASH_ATTN_V2_ROCM
):
return FlashStarcoder2(
model_id,
revision,
@ -615,8 +624,10 @@ def get_model(
if model_type == "qwen2":
sliding_window = config_dict.get("sliding_window", -1)
if (
(sliding_window is None or sliding_window == -1) and FLASH_ATTENTION
) or HAS_FLASH_ATTN_V2_CUDA:
((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
or HAS_FLASH_ATTN_V2_CUDA
or HAS_FLASH_ATTN_V2_ROCM
):
return FlashQwen2(
model_id,
revision,

View File

@ -230,11 +230,15 @@ class LlamaMLP(nn.Module):
config.intermediate_size // weights.process_group.size()
)
# TODO: This is a hotfix to be removed & properly refactored.
self.quantize = config.quantize
def forward(self, hidden_states):
if (
SYSTEM == "rocm"
and self.hidden_act == "silu"
and hidden_states.shape[0] == 1
and not self.quantize
):
out = torch.empty(
hidden_states.shape[0],

View File

@ -290,11 +290,15 @@ class MistralMLP(nn.Module):
config.intermediate_size // weights.process_group.size()
)
# TODO: This is a hotfix to be removed & properly refactored.
self.quantize = config.quantize
def forward(self, hidden_states):
if (
SYSTEM == "rocm"
and self.hidden_act == "silu"
and hidden_states.shape[0] == 1
and not self.quantize
):
out = torch.empty(
hidden_states.shape[0],

View File

@ -890,6 +890,9 @@ class FlashCausalLM(Model):
slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)
kv_cache = get_cache_manager().kv_cache
# Dummy value, some models (starcoder2) don't accept `None`.
input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
# We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
self.model.forward(
input_ids=input_ids,
@ -899,7 +902,7 @@ class FlashCausalLM(Model):
),
kv_cache=get_cache_manager().kv_cache,
block_tables=None,
input_lengths=None,
input_lengths=input_lengths,
slots=slots,
max_s=seqlen,
lm_head_indices=None,

View File

@ -397,6 +397,9 @@ class BaseFlashMistral(FlashCausalLM):
slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)
kv_cache = get_cache_manager().kv_cache
# Dummy value, some models (starcoder2) don't accept `None`.
input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
# We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
self.model.forward(
input_ids=input_ids,
@ -406,7 +409,7 @@ class BaseFlashMistral(FlashCausalLM):
),
kv_cache=get_cache_manager().kv_cache,
block_tables=None,
input_lengths=None,
input_lengths=input_lengths,
slots=slots,
max_s=seqlen,
lm_head_indices=None,