Less intrusive.
This commit is contained in:
parent
cacba5f21f
commit
63e72033b7
|
@ -28,7 +28,6 @@ from transformers.activations import ACT2FN
|
||||||
from typing import Optional, List, Tuple
|
from typing import Optional, List, Tuple
|
||||||
|
|
||||||
from text_generation_server.utils.import_utils import SYSTEM
|
from text_generation_server.utils.import_utils import SYSTEM
|
||||||
from text_generation_server.models.globals import FLASH_DECODING
|
|
||||||
from text_generation_server.utils import paged_attention, flash_attn
|
from text_generation_server.utils import paged_attention, flash_attn
|
||||||
from text_generation_server.layers import (
|
from text_generation_server.layers import (
|
||||||
TensorParallelRowLinear,
|
TensorParallelRowLinear,
|
||||||
|
@ -155,47 +154,10 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||||
# output tensor
|
# output tensor
|
||||||
attn_output = torch.empty_like(query)
|
attn_output = torch.empty_like(query)
|
||||||
|
|
||||||
if FLASH_DECODING:
|
|
||||||
# Prefill
|
|
||||||
kv_cache[0].view(-1, self.num_key_value_heads, self.head_size)[slots] = kv[
|
|
||||||
:, 0
|
|
||||||
]
|
|
||||||
kv_cache[1].view(-1, self.num_key_value_heads, self.head_size)[slots] = kv[
|
|
||||||
:, 1
|
|
||||||
]
|
|
||||||
|
|
||||||
if cu_seqlen_prefill is not None:
|
|
||||||
# flash attention
|
|
||||||
flash_attn.attention(
|
|
||||||
query,
|
|
||||||
# torch.select(kv, dim=1, index=0),
|
|
||||||
# torch.select(kv, dim=1, index=1),
|
|
||||||
kv_cache[0],
|
|
||||||
kv_cache[1],
|
|
||||||
attn_output,
|
|
||||||
cu_seqlen_prefill,
|
|
||||||
block_tables,
|
|
||||||
max_s,
|
|
||||||
self.softmax_scale,
|
|
||||||
)
|
|
||||||
# Decode
|
|
||||||
else:
|
|
||||||
paged_attention.attention(
|
|
||||||
attn_output,
|
|
||||||
query,
|
|
||||||
kv_cache[0],
|
|
||||||
kv_cache[1],
|
|
||||||
self.kv_head_mapping,
|
|
||||||
self.softmax_scale,
|
|
||||||
block_tables,
|
|
||||||
input_lengths,
|
|
||||||
max_s,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
paged_attention.reshape_and_cache(
|
paged_attention.reshape_and_cache(
|
||||||
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
|
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
|
||||||
)
|
)
|
||||||
# Prefill
|
|
||||||
if cu_seqlen_prefill is not None:
|
if cu_seqlen_prefill is not None:
|
||||||
# flash attention
|
# flash attention
|
||||||
flash_attn.attention(
|
flash_attn.attention(
|
||||||
|
@ -204,7 +166,6 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||||
torch.select(kv, dim=1, index=1),
|
torch.select(kv, dim=1, index=1),
|
||||||
attn_output,
|
attn_output,
|
||||||
cu_seqlen_prefill,
|
cu_seqlen_prefill,
|
||||||
None,
|
|
||||||
max_s,
|
max_s,
|
||||||
self.softmax_scale,
|
self.softmax_scale,
|
||||||
)
|
)
|
||||||
|
|
|
@ -27,7 +27,6 @@ from transformers.configuration_utils import PretrainedConfig
|
||||||
from typing import Optional, List, Tuple
|
from typing import Optional, List, Tuple
|
||||||
|
|
||||||
from text_generation_server.utils.import_utils import SYSTEM
|
from text_generation_server.utils.import_utils import SYSTEM
|
||||||
from text_generation_server.models.globals import FLASH_DECODING
|
|
||||||
from text_generation_server.utils import paged_attention, flash_attn
|
from text_generation_server.utils import paged_attention, flash_attn
|
||||||
from text_generation_server.layers import (
|
from text_generation_server.layers import (
|
||||||
TensorParallelRowLinear,
|
TensorParallelRowLinear,
|
||||||
|
@ -217,43 +216,6 @@ class MistralAttention(torch.nn.Module):
|
||||||
|
|
||||||
attn_output = torch.empty_like(query)
|
attn_output = torch.empty_like(query)
|
||||||
|
|
||||||
if FLASH_DECODING:
|
|
||||||
# Prefill
|
|
||||||
kv_cache[0].view(-1, self.num_key_value_heads, self.head_size)[slots] = kv[
|
|
||||||
:, 0
|
|
||||||
]
|
|
||||||
kv_cache[1].view(-1, self.num_key_value_heads, self.head_size)[slots] = kv[
|
|
||||||
:, 1
|
|
||||||
]
|
|
||||||
|
|
||||||
if cu_seqlen_prefill is not None:
|
|
||||||
# flash attention
|
|
||||||
flash_attn.attention(
|
|
||||||
query,
|
|
||||||
# torch.select(kv, dim=1, index=0),
|
|
||||||
# torch.select(kv, dim=1, index=1),
|
|
||||||
kv_cache[0],
|
|
||||||
kv_cache[1],
|
|
||||||
attn_output,
|
|
||||||
cu_seqlen_prefill,
|
|
||||||
block_tables,
|
|
||||||
max_s,
|
|
||||||
self.softmax_scale,
|
|
||||||
)
|
|
||||||
# Decode
|
|
||||||
else:
|
|
||||||
paged_attention.attention(
|
|
||||||
attn_output,
|
|
||||||
query,
|
|
||||||
kv_cache[0],
|
|
||||||
kv_cache[1],
|
|
||||||
self.kv_head_mapping,
|
|
||||||
self.softmax_scale,
|
|
||||||
block_tables,
|
|
||||||
input_lengths,
|
|
||||||
max_s,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
if prefill_cache_indices is not None:
|
if prefill_cache_indices is not None:
|
||||||
kv_to_cache = kv[prefill_cache_indices]
|
kv_to_cache = kv[prefill_cache_indices]
|
||||||
else:
|
else:
|
||||||
|
@ -271,7 +233,6 @@ class MistralAttention(torch.nn.Module):
|
||||||
torch.select(kv, dim=1, index=1),
|
torch.select(kv, dim=1, index=1),
|
||||||
attn_output,
|
attn_output,
|
||||||
cu_seqlen_prefill,
|
cu_seqlen_prefill,
|
||||||
None,
|
|
||||||
max_s,
|
max_s,
|
||||||
self.softmax_scale,
|
self.softmax_scale,
|
||||||
)
|
)
|
||||||
|
|
|
@ -134,7 +134,6 @@ elif HAS_FLASH_ATTN_V2_CUDA:
|
||||||
v,
|
v,
|
||||||
out,
|
out,
|
||||||
cu_seqlens,
|
cu_seqlens,
|
||||||
block_tables,
|
|
||||||
max_s,
|
max_s,
|
||||||
softmax_scale,
|
softmax_scale,
|
||||||
window_size_left=-1,
|
window_size_left=-1,
|
||||||
|
@ -150,7 +149,7 @@ elif HAS_FLASH_ATTN_V2_CUDA:
|
||||||
cu_seqlens,
|
cu_seqlens,
|
||||||
cu_seqlens,
|
cu_seqlens,
|
||||||
None,
|
None,
|
||||||
block_tables,
|
None,
|
||||||
None,
|
None,
|
||||||
max_s,
|
max_s,
|
||||||
max_s,
|
max_s,
|
||||||
|
|
|
@ -27,6 +27,11 @@ def reshape_and_cache(
|
||||||
ipex.llm.modules.PagedAttention.reshape_and_cache(
|
ipex.llm.modules.PagedAttention.reshape_and_cache(
|
||||||
key, value, key_cache, value_cache, slots
|
key, value, key_cache, value_cache, slots
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
if FLASH_DECODING:
|
||||||
|
shape = key_cache.shape
|
||||||
|
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
|
||||||
|
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
|
||||||
else:
|
else:
|
||||||
cache_ops.reshape_and_cache(
|
cache_ops.reshape_and_cache(
|
||||||
key, value, key_cache, value_cache, slots, "auto", 1.0
|
key, value, key_cache, value_cache, slots, "auto", 1.0
|
||||||
|
|
Loading…
Reference in New Issue