feat: prefer huggingface_hub in docs and show image api (#1844)
This PR prefers the `huggingface_hub` library, refactors the grammar docs and adds the new image_url api to the vlm docs.
This commit is contained in:
parent
de079d607a
commit
65539b743e
|
@ -2,7 +2,7 @@
|
|||
|
||||
Text Generation Inference (TGI) now supports [JSON and regex grammars](#grammar-and-constraints) and [tools and functions](#tools-and-functions) to help developers guide LLM responses to fit their needs.
|
||||
|
||||
These feature are available starting from version `1.4.3`. They are accessible via the [text_generation](https://pypi.org/project/text-generation/) library. The tool support is compatible with OpenAI's client libraries. The following guide will walk you through the new features and how to use them!
|
||||
These feature are available starting from version `1.4.3`. They are accessible via the [`huggingface_hub`](https://pypi.org/project/huggingface-hub/) library. The tool support is compatible with OpenAI's client libraries. The following guide will walk you through the new features and how to use them!
|
||||
|
||||
_note: guidance is supported as grammar in the `/generate` endpoint and as tools in the `/chat/completions` endpoint._
|
||||
|
||||
|
@ -74,6 +74,45 @@ curl localhost:3000/generate \
|
|||
|
||||
```
|
||||
|
||||
### Hugging Face Hub Python Library
|
||||
|
||||
The Hugging Face Hub Python library provides a client that makes it easy to interact with the Messages API. Here's an example of how to use the client to send a request with a grammar parameter.
|
||||
|
||||
```python
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
client = InferenceClient("http://localhost:3000")
|
||||
|
||||
schema = {
|
||||
"properties": {
|
||||
"location": {"title": "Location", "type": "string"},
|
||||
"activity": {"title": "Activity", "type": "string"},
|
||||
"animals_seen": {
|
||||
"maximum": 5,
|
||||
"minimum": 1,
|
||||
"title": "Animals Seen",
|
||||
"type": "integer",
|
||||
},
|
||||
"animals": {"items": {"type": "string"}, "title": "Animals", "type": "array"},
|
||||
},
|
||||
"required": ["location", "activity", "animals_seen", "animals"],
|
||||
"title": "Animals",
|
||||
"type": "object",
|
||||
}
|
||||
|
||||
user_input = "I saw a puppy a cat and a raccoon during my bike ride in the park"
|
||||
resp = client.text_generation(
|
||||
f"convert to JSON: 'f{user_input}'. please use the following schema: {schema}",
|
||||
max_new_tokens=100,
|
||||
seed=42,
|
||||
grammar={"type": "json", "value": schema},
|
||||
)
|
||||
|
||||
print(resp)
|
||||
# { "activity": "bike ride", "animals": ["puppy", "cat", "raccoon"], "animals_seen": 3, "location": "park" }
|
||||
|
||||
```
|
||||
|
||||
A grammar can be defined using Pydantic models, JSON schemas, or regular expressions. The LLM will then generate a response that conforms to the specified grammar.
|
||||
|
||||
> Note: A grammar must compile to an intermediate representation to constrain the output. Grammar compilation is a computationally expensive and may take a few seconds to complete on the first request. Subsequent requests will use the cached grammar and will be much faster.
|
||||
|
@ -83,134 +122,55 @@ A grammar can be defined using Pydantic models, JSON schemas, or regular express
|
|||
Using Pydantic models we can define a similar grammar as the previous example in a shorter and more readable way.
|
||||
|
||||
```python
|
||||
import requests
|
||||
from huggingface_hub import InferenceClient
|
||||
from pydantic import BaseModel, conint
|
||||
from typing import List
|
||||
|
||||
|
||||
class Animals(BaseModel):
|
||||
location: str
|
||||
activity: str
|
||||
animals_seen: conint(ge=1, le=5) # Constrained integer type
|
||||
animals: List[str]
|
||||
|
||||
prompt = "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park"
|
||||
|
||||
data = {
|
||||
"inputs": prompt,
|
||||
"parameters": {
|
||||
"repetition_penalty": 1.3,
|
||||
"grammar": {
|
||||
"type": "json",
|
||||
"value": Animals.schema()
|
||||
}
|
||||
}
|
||||
}
|
||||
client = InferenceClient("http://localhost:3000")
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
'http://127.0.0.1:3000/generate',
|
||||
headers=headers,
|
||||
json=data
|
||||
user_input = "I saw a puppy a cat and a raccoon during my bike ride in the park"
|
||||
resp = client.text_generation(
|
||||
f"convert to JSON: 'f{user_input}'. please use the following schema: {Animals.schema()}",
|
||||
max_new_tokens=100,
|
||||
seed=42,
|
||||
grammar={"type": "json", "value": Animals.schema()},
|
||||
)
|
||||
print(response.json())
|
||||
# {'generated_text': '{ "activity": "bike riding", "animals": ["puppy","cat","raccoon"],"animals_seen": 3, "location":"park" }'}
|
||||
|
||||
print(resp)
|
||||
# { "activity": "bike ride", "animals": ["puppy", "cat", "raccoon"], "animals_seen": 3, "location": "park" }
|
||||
|
||||
|
||||
```
|
||||
|
||||
### JSON Schema Integration
|
||||
|
||||
If Pydantic's not your style, go raw with direct JSON Schema integration. This is similar to the first example but with programmatic control.
|
||||
defining a grammar as regular expressions
|
||||
|
||||
```python
|
||||
import requests
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
json_schema = {
|
||||
"properties": {
|
||||
"location": {
|
||||
"type": "string"
|
||||
},
|
||||
"activity": {
|
||||
"type": "string"
|
||||
},
|
||||
"animals_seen": {
|
||||
"type": "integer",
|
||||
"minimum": 1,
|
||||
"maximum": 5
|
||||
},
|
||||
"animals": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
},
|
||||
"required": ["location", "activity", "animals_seen", "animals"]
|
||||
}
|
||||
client = InferenceClient("http://localhost:3000")
|
||||
|
||||
data = {
|
||||
"inputs": "convert to JSON: I saw a puppy a cat and a raccoon during my bike ride in the park",
|
||||
"parameters": {
|
||||
"max_new_tokens": 200,
|
||||
"repetition_penalty": 1.3,
|
||||
"grammar": {
|
||||
"type": "json",
|
||||
"value": json_schema
|
||||
}
|
||||
}
|
||||
}
|
||||
regexp = "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)"
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
|
||||
response = requests.post(
|
||||
'http://127.0.0.1:3000/generate',
|
||||
headers=headers,
|
||||
json=data
|
||||
)
|
||||
print(response.json())
|
||||
# {'generated_text': '{\n"activity": "biking",\n"animals": ["puppy","cat","raccoon"]\n , "animals_seen": 3,\n "location":"park"}'}
|
||||
|
||||
```
|
||||
|
||||
### Using the client
|
||||
|
||||
TGI provides a client library to that make it easy to send requests with all of the parameters we've discussed above. Here's an example of how to use the client to send a request with a grammar parameter.
|
||||
|
||||
```python
|
||||
from text_generation import AsyncClient
|
||||
from text_generation.types import GrammarType
|
||||
|
||||
# NOTE: tools defined above and removed for brevity
|
||||
|
||||
# Define an async function to encapsulate the async operation
|
||||
async def main():
|
||||
client = AsyncClient(base_url="http://localhost:3000")
|
||||
|
||||
# Use 'await' to wait for the async method 'chat' to complete
|
||||
response = await client.generate(
|
||||
"Whats Googles DNS",
|
||||
max_new_tokens=10,
|
||||
decoder_input_details=True,
|
||||
seed=1,
|
||||
resp = client.text_generation(
|
||||
f"Whats Googles DNS? Please use the following regex: {regexp}",
|
||||
seed=42,
|
||||
grammar={
|
||||
"type": GrammarType.Regex,
|
||||
"value": "((25[0-5]|2[0-4]\\d|[01]?\\d\\d?)\\.){3}(25[0-5]|2[0-4]\\d|[01]?\\d\\d?)",
|
||||
"type": "regex",
|
||||
"value": regexp,
|
||||
},
|
||||
)
|
||||
)
|
||||
|
||||
# Once the response is received, you can process it
|
||||
print(response.generated_text)
|
||||
|
||||
# Ensure the main async function is run in the event loop
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
asyncio.run(main())
|
||||
|
||||
# 118.8.0.84
|
||||
print(resp)
|
||||
# 7.1.1.1
|
||||
|
||||
```
|
||||
|
||||
|
@ -265,54 +225,16 @@ curl localhost:3000/v1/chat/completions \
|
|||
// {"id":"","object":"text_completion","created":1709051640,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":19,"total_tokens":176}}
|
||||
```
|
||||
|
||||
### Text Generation Inference Client
|
||||
### Chat Completion with Tools
|
||||
|
||||
TGI provides a client library to interact with the Messages API and Tool functions. The client library is available in both synchronous and asynchronous versions.
|
||||
Grammars are supported in the `/generate` endpoint, while tools are supported in the `/chat/completions` endpoint. Here's an example of how to use the client to send a request with a tool parameter.
|
||||
|
||||
```python
|
||||
from text_generation import AsyncClient
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
# NOTE: tools defined above and removed for brevity
|
||||
client = InferenceClient("http://localhost:3000")
|
||||
|
||||
# Define an async function to encapsulate the async operation
|
||||
async def main():
|
||||
client = AsyncClient(base_url="http://localhost:3000")
|
||||
|
||||
# Use 'await' to wait for the async method 'chat' to complete
|
||||
response = await client.chat(
|
||||
max_tokens=100,
|
||||
seed=1,
|
||||
tools=tools,
|
||||
presence_penalty=-1.1,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You're a helpful assistant! Answer the users question best you can.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is the weather like in Brooklyn, New York?",
|
||||
},
|
||||
],
|
||||
)
|
||||
|
||||
# Once the response is received, you can process it
|
||||
print(response.choices[0].message.tool_calls)
|
||||
|
||||
# Ensure the main async function is run in the event loop
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
asyncio.run(main())
|
||||
|
||||
# {"id":"","object":"text_completion","created":1709051942,"model":"HuggingFaceH4/zephyr-7b-beta","system_fingerprint":"1.4.3-native","choices":[{"index":0,"message":{"role":"assistant","tool_calls":{"id":0,"type":"function","function":{"description":null,"name":"tools","parameters":{"format":"celsius","location":"New York"}}}},"logprobs":null,"finish_reason":"eos_token"}],"usage":{"prompt_tokens":157,"completion_tokens":20,"total_tokens":177}}
|
||||
|
||||
```
|
||||
|
||||
<details>
|
||||
<summary>Tools used in example above</summary>
|
||||
|
||||
```python
|
||||
tools = [
|
||||
tools = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
|
@ -360,11 +282,29 @@ if __name__ == "__main__":
|
|||
"required": ["location", "format", "num_days"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
```
|
||||
},
|
||||
]
|
||||
|
||||
</details>
|
||||
chat = client.chat_completion(
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You're a helpful assistant! Answer the users question best you can.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "What is the weather like in Brooklyn, New York?",
|
||||
},
|
||||
],
|
||||
tools=tools,
|
||||
seed=42,
|
||||
max_tokens=100,
|
||||
)
|
||||
|
||||
print(chat.choices[0].message.tool_calls)
|
||||
# [ChatCompletionOutputToolCall(function=ChatCompletionOutputFunctionDefinition(arguments={'format': 'fahrenheit', 'location': 'Brooklyn, New York', 'num_days': 7}, name='get_n_day_weather_forecast', description=None), id=0, type='function')]
|
||||
|
||||
```
|
||||
|
||||
### OpenAI integration
|
||||
|
||||
|
|
|
@ -53,7 +53,67 @@ for token in client.text_generation(prompt, max_new_tokens=10, stream=True):
|
|||
# This is a picture of an anthropomorphic rabbit in a space suit.
|
||||
```
|
||||
|
||||
If you want additional details, you can add `details=True`. In this case, you get a `TextGenerationStreamResponse` which contains additional information such as the probabilities and the tokens. For the final response in the stream, it also returns the full generated text.
|
||||
or via the `chat_completion` endpoint:
|
||||
|
||||
```python
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
client = InferenceClient("http://127.0.0.1:3000")
|
||||
|
||||
chat = client.chat_completion(
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Whats in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
seed=42,
|
||||
max_tokens=100,
|
||||
)
|
||||
|
||||
print(chat)
|
||||
# ChatCompletionOutput(choices=[ChatCompletionOutputComplete(finish_reason='length', index=0, message=ChatCompletionOutputMessage(role='assistant', content=" The image you've provided features an anthropomorphic rabbit in spacesuit attire. This rabbit is depicted with human-like posture and movement, standing on a rocky terrain with a vast, reddish-brown landscape in the background. The spacesuit is detailed with mission patches, circuitry, and a helmet that covers the rabbit's face and ear, with an illuminated red light on the chest area.\n\nThe artwork style is that of a", name=None, tool_calls=None), logprobs=None)], created=1714589614, id='', model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=ChatCompletionOutputUsage(completion_tokens=100, prompt_tokens=2943, total_tokens=3043))
|
||||
|
||||
```
|
||||
|
||||
or with OpenAi's library:
|
||||
|
||||
```python
|
||||
from openai import OpenAI
|
||||
|
||||
# init the client but point it to TGI
|
||||
client = OpenAI(base_url="http://localhost:3000/v1", api_key="-")
|
||||
|
||||
chat_completion = client.chat.completions.create(
|
||||
model="tgi",
|
||||
messages=[
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Whats in this image?"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
print(chat_completion)
|
||||
# ChatCompletion(id='', choices=[Choice(finish_reason='eos_token', index=0, logprobs=None, message=ChatCompletionMessage(content=' The image depicts an anthropomorphic rabbit dressed in a space suit with gear that resembles NASA attire. The setting appears to be a solar eclipse with dramatic mountain peaks and a partial celestial body in the sky. The artwork is detailed and vivid, with a warm color palette and a sense of an adventurous bunny exploring or preparing for a journey beyond Earth. ', role='assistant', function_call=None, tool_calls=None))], created=1714589732, model='llava-hf/llava-v1.6-mistral-7b-hf', object='text_completion', system_fingerprint='2.0.2-native', usage=CompletionUsage(completion_tokens=84, prompt_tokens=2943, total_tokens=3027))
|
||||
```
|
||||
|
||||
### Inference Through Sending `cURL` Requests
|
||||
|
||||
|
|
Loading…
Reference in New Issue