feat(router): drop requests when client closes the channel (#202)
This commit is contained in:
parent
b6ee0ec7b0
commit
709d8936f6
|
@ -66,7 +66,7 @@ jobs:
|
|||
password: ${{ secrets.TAILSCALE_DOCKER_PASSWORD }}
|
||||
registry: registry.internal.huggingface.tech
|
||||
- name: Login to Azure Container Registry
|
||||
# if: github.event_name != 'pull_request'
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v2.1.0
|
||||
with:
|
||||
username: ${{ secrets.AZURE_DOCKER_USERNAME }}
|
||||
|
|
|
@ -42,42 +42,51 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "anstream"
|
||||
version = "0.2.6"
|
||||
version = "0.3.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "342258dd14006105c2b75ab1bd7543a03bdf0cfc94383303ac212a04939dff6f"
|
||||
checksum = "9e579a7752471abc2a8268df8b20005e3eadd975f585398f17efcfd8d4927371"
|
||||
dependencies = [
|
||||
"anstyle",
|
||||
"anstyle-parse",
|
||||
"anstyle-query",
|
||||
"anstyle-wincon",
|
||||
"concolor-override",
|
||||
"concolor-query",
|
||||
"colorchoice",
|
||||
"is-terminal",
|
||||
"utf8parse",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "anstyle"
|
||||
version = "0.3.5"
|
||||
version = "1.0.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "23ea9e81bd02e310c216d080f6223c179012256e5151c41db88d12c88a1684d2"
|
||||
checksum = "41ed9a86bf92ae6580e0a31281f65a1b1d867c0cc68d5346e2ae128dddfa6a7d"
|
||||
|
||||
[[package]]
|
||||
name = "anstyle-parse"
|
||||
version = "0.1.1"
|
||||
version = "0.2.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a7d1bb534e9efed14f3e5f44e7dd1a4f709384023a4165199a4241e18dff0116"
|
||||
checksum = "e765fd216e48e067936442276d1d57399e37bce53c264d6fefbe298080cb57ee"
|
||||
dependencies = [
|
||||
"utf8parse",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "anstyle-wincon"
|
||||
version = "0.2.0"
|
||||
name = "anstyle-query"
|
||||
version = "1.0.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "c3127af6145b149f3287bb9a0d10ad9c5692dba8c53ad48285e5bec4063834fa"
|
||||
checksum = "5ca11d4be1bab0c8bc8734a9aa7bf4ee8316d462a08c6ac5052f888fef5b494b"
|
||||
dependencies = [
|
||||
"windows-sys 0.48.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "anstyle-wincon"
|
||||
version = "1.0.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "4bcd8291a340dd8ac70e18878bc4501dd7b4ff970cfa21c207d36ece51ea88fd"
|
||||
dependencies = [
|
||||
"anstyle",
|
||||
"windows-sys 0.45.0",
|
||||
"windows-sys 0.48.0",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -105,7 +114,7 @@ checksum = "16e62a023e7c117e27523144c5d2459f4397fcc3cab0085af8e2224f643a0193"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -116,7 +125,7 @@ checksum = "b9ccdd8f2a161be9bd5c023df56f1b2a0bd1d83872ae53b71a84a12c9bf6e842"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -127,9 +136,9 @@ checksum = "d468802bab17cbc0cc575e9b053f41e72aa36bfa6b7f55e3529ffa43161b97fa"
|
|||
|
||||
[[package]]
|
||||
name = "axum"
|
||||
version = "0.6.13"
|
||||
version = "0.6.15"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "6539e4565c365448d483967c6dee3eaecb8e87679a17806a831e82b05b903c18"
|
||||
checksum = "3b32c5ea3aabaf4deb5f5ced2d688ec0844c881c9e6c696a8b769a05fc691e62"
|
||||
dependencies = [
|
||||
"async-trait",
|
||||
"axum-core",
|
||||
|
@ -310,9 +319,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "clap"
|
||||
version = "4.2.1"
|
||||
version = "4.2.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "046ae530c528f252094e4a77886ee1374437744b2bff1497aa898bbddbbb29b3"
|
||||
checksum = "9b802d85aaf3a1cdb02b224ba472ebdea62014fccfcb269b95a4d76443b5ee5a"
|
||||
dependencies = [
|
||||
"clap_builder",
|
||||
"clap_derive",
|
||||
|
@ -321,9 +330,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "clap_builder"
|
||||
version = "4.2.1"
|
||||
version = "4.2.2"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "223163f58c9a40c3b0a43e1c4b50a9ce09f007ea2cb1ec258a687945b4b7929f"
|
||||
checksum = "14a1a858f532119338887a4b8e1af9c60de8249cd7bafd68036a489e261e37b6"
|
||||
dependencies = [
|
||||
"anstream",
|
||||
"anstyle",
|
||||
|
@ -341,7 +350,7 @@ dependencies = [
|
|||
"heck",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -351,19 +360,10 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
|
|||
checksum = "8a2dd5a6fe8c6e3502f568a6353e5273bbb15193ad9a89e457b9970798efbea1"
|
||||
|
||||
[[package]]
|
||||
name = "concolor-override"
|
||||
name = "colorchoice"
|
||||
version = "1.0.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a855d4a1978dc52fb0536a04d384c2c0c1aa273597f08b77c8c4d3b2eec6037f"
|
||||
|
||||
[[package]]
|
||||
name = "concolor-query"
|
||||
version = "0.3.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "88d11d52c3d7ca2e6d0040212be9e4dbbcd78b6447f535b6b561f449427944cf"
|
||||
dependencies = [
|
||||
"windows-sys 0.45.0",
|
||||
]
|
||||
checksum = "acbf1af155f9b9ef647e42cdc158db4b64a1b61f743629225fde6f3e0be2a7c7"
|
||||
|
||||
[[package]]
|
||||
name = "console"
|
||||
|
@ -794,7 +794,7 @@ checksum = "89ca545a94061b6365f2c7355b4b32bd20df3ff95f02da9329b34ccc3bd6ee72"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -868,9 +868,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "h2"
|
||||
version = "0.3.16"
|
||||
version = "0.3.18"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "5be7b54589b581f624f566bf5d8eb2bab1db736c51528720b6bd36b96b55924d"
|
||||
checksum = "17f8a914c2987b688368b5138aa05321db91f4090cf26118185672ad588bce21"
|
||||
dependencies = [
|
||||
"bytes",
|
||||
"fnv",
|
||||
|
@ -966,9 +966,9 @@ checksum = "c4a1e36c821dbe04574f602848a19f742f4fb3c98d40449f11bcad18d6b17421"
|
|||
|
||||
[[package]]
|
||||
name = "hyper"
|
||||
version = "0.14.25"
|
||||
version = "0.14.26"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "cc5e554ff619822309ffd57d8734d77cd5ce6238bc956f037ea06c58238c9899"
|
||||
checksum = "ab302d72a6f11a3b910431ff93aae7e773078c769f0a3ef15fb9ec692ed147d4"
|
||||
dependencies = [
|
||||
"bytes",
|
||||
"futures-channel",
|
||||
|
@ -1364,7 +1364,7 @@ checksum = "8795add3e14028f11f8e848bd3294898a8294767b3776b6f733560d33bd2530b"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1517,7 +1517,7 @@ checksum = "a948666b637a0f465e8564c73e89d4dde00d72d4d473cc972f390fc3dcee7d9c"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -1787,9 +1787,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "prost"
|
||||
version = "0.11.8"
|
||||
version = "0.11.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "e48e50df39172a3e7eb17e14642445da64996989bc212b583015435d39a58537"
|
||||
checksum = "0b82eaa1d779e9a4bc1c3217db8ffbeabaae1dca241bf70183242128d48681cd"
|
||||
dependencies = [
|
||||
"bytes",
|
||||
"prost-derive",
|
||||
|
@ -1797,9 +1797,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "prost-build"
|
||||
version = "0.11.8"
|
||||
version = "0.11.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "2c828f93f5ca4826f97fedcbd3f9a536c16b12cff3dbbb4a007f932bbad95b12"
|
||||
checksum = "119533552c9a7ffacc21e099c24a0ac8bb19c2a2a3f363de84cd9b844feab270"
|
||||
dependencies = [
|
||||
"bytes",
|
||||
"heck",
|
||||
|
@ -1819,9 +1819,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "prost-derive"
|
||||
version = "0.11.8"
|
||||
version = "0.11.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "4ea9b0f8cbe5e15a8a042d030bd96668db28ecb567ec37d691971ff5731d2b1b"
|
||||
checksum = "e5d2d8d10f3c6ded6da8b05b5fb3b8a5082514344d56c9f871412d29b4e075b4"
|
||||
dependencies = [
|
||||
"anyhow",
|
||||
"itertools 0.10.5",
|
||||
|
@ -1832,9 +1832,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "prost-types"
|
||||
version = "0.11.8"
|
||||
version = "0.11.9"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "379119666929a1afd7a043aa6cf96fa67a6dce9af60c88095a4686dbce4c9c88"
|
||||
checksum = "213622a1460818959ac1181aaeb2dc9c7f63df720db7d788b3e24eacd1983e13"
|
||||
dependencies = [
|
||||
"prost",
|
||||
]
|
||||
|
@ -2153,14 +2153,14 @@ checksum = "291a097c63d8497e00160b166a967a4a79c64f3facdd01cbd7502231688d77df"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "serde_json"
|
||||
version = "1.0.95"
|
||||
version = "1.0.96"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d721eca97ac802aa7777b701877c8004d950fc142651367300d21c1cc0194744"
|
||||
checksum = "057d394a50403bcac12672b2b18fb387ab6d289d957dab67dd201875391e52f1"
|
||||
dependencies = [
|
||||
"itoa",
|
||||
"ryu",
|
||||
|
@ -2330,9 +2330,9 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "syn"
|
||||
version = "2.0.14"
|
||||
version = "2.0.15"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "fcf316d5356ed6847742d036f8a39c3b8435cac10bd528a4bd461928a6ab34d5"
|
||||
checksum = "a34fcf3e8b60f57e6a14301a2e916d323af98b0ea63c599441eec8558660c822"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
|
@ -2450,7 +2450,7 @@ checksum = "f9456a42c5b0d803c8cd86e73dd7cc9edd429499f37a3550d286d5e86720569f"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -2578,7 +2578,7 @@ checksum = "61a573bdc87985e9d6ddeed1b3d864e8a302c847e40d647746df2f1de209d1ce"
|
|||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
@ -2928,9 +2928,9 @@ checksum = "711b9620af191e0cdc7468a8d14e709c3dcdb115b36f838e601583af800a370a"
|
|||
|
||||
[[package]]
|
||||
name = "utoipa"
|
||||
version = "3.2.1"
|
||||
version = "3.3.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "24e7ee17c9ef094b86e1e04170d90765bd76cb381921dacb4d3e175a267bdae6"
|
||||
checksum = "68ae74ef183fae36d650f063ae7bde1cacbe1cd7e72b617cbe1e985551878b98"
|
||||
dependencies = [
|
||||
"indexmap",
|
||||
"serde",
|
||||
|
@ -2940,14 +2940,14 @@ dependencies = [
|
|||
|
||||
[[package]]
|
||||
name = "utoipa-gen"
|
||||
version = "3.2.1"
|
||||
version = "3.3.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "df6f458e5abc811d44aca28455efc4163fb7565a7af2aa32d17611f3d1d9794d"
|
||||
checksum = "7ea8ac818da7e746a63285594cce8a96f5e00ee31994e655bd827569cb8b137b"
|
||||
dependencies = [
|
||||
"proc-macro-error",
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.14",
|
||||
"syn 2.0.15",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
|
|
@ -3,6 +3,7 @@ use crate::validation::{Validation, ValidationError};
|
|||
use crate::{Entry, Queue, Token};
|
||||
use crate::{GenerateRequest, PrefillToken};
|
||||
use flume::r#async::RecvStream;
|
||||
use flume::SendError;
|
||||
use futures::future::try_join_all;
|
||||
use futures::stream::StreamExt;
|
||||
use nohash_hasher::IntMap;
|
||||
|
@ -11,7 +12,7 @@ use text_generation_client::{
|
|||
Batch, ClientError, GeneratedText, Generation, PrefillTokens, ShardedClient,
|
||||
};
|
||||
use thiserror::Error;
|
||||
use tokio::sync::{Notify, Semaphore, TryAcquireError};
|
||||
use tokio::sync::{Notify, OwnedSemaphorePermit, Semaphore, TryAcquireError};
|
||||
use tokio::time::Instant;
|
||||
use tracing::{info_span, instrument, Instrument, Span};
|
||||
|
||||
|
@ -73,9 +74,14 @@ impl Infer {
|
|||
pub(crate) async fn generate_stream(
|
||||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<RecvStream<Result<InferStreamResponse, InferError>>, InferError> {
|
||||
) -> Result<
|
||||
(
|
||||
OwnedSemaphorePermit,
|
||||
RecvStream<Result<InferStreamResponse, InferError>>,
|
||||
),
|
||||
InferError,
|
||||
> {
|
||||
// Limit concurrent requests by acquiring a permit from the semaphore
|
||||
// This permit will live as long as Entry
|
||||
let permit = self
|
||||
.clone()
|
||||
.limit_concurrent_requests
|
||||
|
@ -104,7 +110,6 @@ impl Infer {
|
|||
temp_span: None,
|
||||
queue_time: Instant::now(),
|
||||
batch_time: None,
|
||||
_permit: permit,
|
||||
});
|
||||
|
||||
// Notify the background task that we have a new entry in the queue that needs
|
||||
|
@ -112,7 +117,7 @@ impl Infer {
|
|||
self.shared.batching_task.notify_one();
|
||||
|
||||
// Return stream
|
||||
Ok(response_rx.into_stream())
|
||||
Ok((permit, response_rx.into_stream()))
|
||||
}
|
||||
|
||||
/// Add a new request to the queue and return a InferResponse
|
||||
|
@ -121,8 +126,8 @@ impl Infer {
|
|||
&self,
|
||||
request: GenerateRequest,
|
||||
) -> Result<InferResponse, InferError> {
|
||||
// Create stream
|
||||
let mut stream = self.generate_stream(request).await?;
|
||||
// Create stream and keep semaphore permit as long as generate lives
|
||||
let (_permit, mut stream) = self.generate_stream(request).await?;
|
||||
|
||||
// Return values
|
||||
let mut result_prefill = Vec::new();
|
||||
|
@ -276,12 +281,10 @@ async fn batching_task(
|
|||
.next_batch(min_size, max_batch_size - batch_size as usize)
|
||||
.await
|
||||
{
|
||||
let new_batch_size = new_batch.size;
|
||||
entries.iter_mut().for_each(|(_, entry)| {
|
||||
// Create a new span to add the info that this entry is waiting
|
||||
// because a new batch is being computed
|
||||
let entry_waiting_span =
|
||||
info_span!(parent: &entry.span, "waiting", batch_size = new_batch_size);
|
||||
let entry_waiting_span = info_span!(parent: &entry.span, "waiting");
|
||||
// Add relationships
|
||||
span.follows_from(&entry_waiting_span);
|
||||
entry_waiting_span.follows_from(&span);
|
||||
|
@ -308,8 +311,7 @@ async fn batching_task(
|
|||
info_span!(parent: None, "batch", batch_size = next_batch_size);
|
||||
entries.iter_mut().for_each(|(_, entry)| {
|
||||
// Create a new span to link the batch back to this entry
|
||||
let entry_batch_span =
|
||||
info_span!(parent: &entry.span, "infer", batch_size = next_batch_size);
|
||||
let entry_batch_span = info_span!(parent: &entry.span, "infer");
|
||||
// Add relationships
|
||||
next_batch_span.follows_from(&entry_batch_span);
|
||||
entry_batch_span.follows_from(&next_batch_span);
|
||||
|
@ -339,7 +341,23 @@ async fn prefill(
|
|||
|
||||
match client.prefill(batch).await {
|
||||
Ok((generations, next_batch)) => {
|
||||
send_generations(generations, entries);
|
||||
filter_send_generations(generations, entries);
|
||||
|
||||
// Filter next batch and remove requests that were stopped
|
||||
let next_batch = match next_batch {
|
||||
None => None,
|
||||
Some(batch) => {
|
||||
let id = batch.id;
|
||||
let next_batch = filter_batch(batch, entries);
|
||||
// Next batch is now empty
|
||||
// Clear it from the Python shards cache
|
||||
if next_batch.is_none() {
|
||||
let _ = client.clear_cache(Some(id)).await;
|
||||
}
|
||||
next_batch
|
||||
}
|
||||
};
|
||||
|
||||
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
|
||||
metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
|
||||
next_batch
|
||||
|
@ -361,17 +379,37 @@ async fn decode(
|
|||
entries: &mut IntMap<u64, Entry>,
|
||||
) -> Option<Batch> {
|
||||
let start_time = Instant::now();
|
||||
let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
|
||||
metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
|
||||
|
||||
match client.decode(batches).await {
|
||||
Ok((generations, next_batch)) => {
|
||||
send_generations(generations, entries);
|
||||
filter_send_generations(generations, entries);
|
||||
|
||||
// Filter next batch and remove requests that were stopped
|
||||
let next_batch = match next_batch {
|
||||
None => None,
|
||||
Some(batch) => {
|
||||
let id = batch.id;
|
||||
let next_batch = filter_batch(batch, entries);
|
||||
// Next batch is now empty
|
||||
// Clear it from the Python shards cache
|
||||
if next_batch.is_none() {
|
||||
let _ = client.clear_cache(Some(id)).await;
|
||||
}
|
||||
next_batch
|
||||
}
|
||||
};
|
||||
|
||||
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
|
||||
metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
|
||||
next_batch
|
||||
}
|
||||
// If we have an error, we discard the whole batch
|
||||
Err(err) => {
|
||||
for id in batch_ids {
|
||||
let _ = client.clear_cache(Some(id)).await;
|
||||
}
|
||||
send_errors(err, entries);
|
||||
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
|
||||
None
|
||||
|
@ -379,6 +417,86 @@ async fn decode(
|
|||
}
|
||||
}
|
||||
|
||||
/// Filter a `batch` and remove all requests not present in `entries`
|
||||
#[instrument(skip_all)]
|
||||
fn filter_batch(mut batch: Batch, entries: &IntMap<u64, Entry>) -> Option<Batch> {
|
||||
batch.requests.retain(|r| entries.contains_key(&r.id));
|
||||
let size = batch.requests.len();
|
||||
if size == 0 {
|
||||
return None;
|
||||
}
|
||||
batch.size = size as u32;
|
||||
Some(batch)
|
||||
}
|
||||
|
||||
/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
|
||||
/// and filter entries
|
||||
#[instrument(skip_all)]
|
||||
fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
|
||||
generations.into_iter().for_each(|generation| {
|
||||
let id = generation.request_id;
|
||||
// Get entry
|
||||
// We can `expect` here as the request id should always be in the entries
|
||||
let entry = entries
|
||||
.get(&id)
|
||||
.expect("ID not found in entries. This is a bug.");
|
||||
|
||||
// Create and enter a span to link this function back to the entry
|
||||
let _span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
|
||||
// Send generation responses back to the infer task
|
||||
// If the receive an error from the Flume channel, it means that the client dropped the
|
||||
// request and we need to stop generating hence why we unwrap_or(true)
|
||||
let stopped = send_responses(generation, entry).map_err(|err| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
err
|
||||
}).unwrap_or(true);
|
||||
if stopped {
|
||||
entries.remove(&id).expect("ID not found in entries. This is a bug.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Send responses through the `entry` response channel
|
||||
fn send_responses(
|
||||
generation: Generation,
|
||||
entry: &Entry,
|
||||
) -> Result<bool, SendError<Result<InferStreamResponse, InferError>>> {
|
||||
let mut stopped = false;
|
||||
|
||||
if let Some(prefill_tokens) = generation.prefill_tokens {
|
||||
// Send message
|
||||
entry
|
||||
.response_tx
|
||||
.send(Ok(InferStreamResponse::Prefill(prefill_tokens)))?;
|
||||
}
|
||||
|
||||
// Create last Token
|
||||
let token = Token {
|
||||
id: generation.token_id,
|
||||
text: generation.token_text,
|
||||
logprob: generation.token_logprob,
|
||||
special: generation.token_is_special,
|
||||
};
|
||||
|
||||
if let Some(generated_text) = generation.generated_text {
|
||||
// Generation has ended
|
||||
stopped = true;
|
||||
// Send message
|
||||
entry.response_tx.send(Ok(InferStreamResponse::End {
|
||||
token,
|
||||
generated_text,
|
||||
queued: entry.queue_time,
|
||||
start: entry.batch_time.unwrap(),
|
||||
}))?;
|
||||
} else {
|
||||
// Send message
|
||||
entry
|
||||
.response_tx
|
||||
.send(Ok(InferStreamResponse::Token(token)))?;
|
||||
}
|
||||
Ok(stopped)
|
||||
}
|
||||
|
||||
/// Send errors to Infer for all `entries`
|
||||
#[instrument(skip_all)]
|
||||
fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
||||
|
@ -397,65 +515,6 @@ fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
|||
});
|
||||
}
|
||||
|
||||
/// Send one or multiple `InferStreamResponse` to Infer for all `entries`
|
||||
#[instrument(skip_all)]
|
||||
fn send_generations(generations: Vec<Generation>, entries: &mut IntMap<u64, Entry>) {
|
||||
generations.into_iter().for_each(|generation| {
|
||||
// Get entry
|
||||
// We can `expect` here as the request id should always be in the entries
|
||||
let entry = entries
|
||||
.get(&generation.request_id)
|
||||
.expect("ID not found in entries. This is a bug.");
|
||||
|
||||
// Create and enter a span to link this function back to the entry
|
||||
let _generation_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_generation", generation = ?generation).entered();
|
||||
|
||||
if let Some(prefill_tokens) = generation.prefill_tokens {
|
||||
// Send message
|
||||
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||||
entry
|
||||
.response_tx
|
||||
.send(Ok(InferStreamResponse::Prefill(prefill_tokens)))
|
||||
.unwrap_or(());
|
||||
}
|
||||
|
||||
// Create last Token
|
||||
let token = Token {
|
||||
id: generation.token_id,
|
||||
text: generation.token_text,
|
||||
logprob: generation.token_logprob,
|
||||
special: generation.token_is_special,
|
||||
};
|
||||
|
||||
if let Some(generated_text) = generation.generated_text {
|
||||
// Remove entry as this is the last message
|
||||
// We can `expect` here as the request id should always be in the entries
|
||||
let entry = entries
|
||||
.remove(&generation.request_id)
|
||||
.expect("ID not found in entries. This is a bug.");
|
||||
|
||||
// Send message
|
||||
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||||
entry
|
||||
.response_tx
|
||||
.send(Ok(InferStreamResponse::End {
|
||||
token,
|
||||
generated_text,
|
||||
queued: entry.queue_time,
|
||||
start: entry.batch_time.unwrap(),
|
||||
}))
|
||||
.unwrap_or(());
|
||||
} else {
|
||||
// Send message
|
||||
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||||
entry
|
||||
.response_tx
|
||||
.send(Ok(InferStreamResponse::Token(token)))
|
||||
.unwrap_or(());
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub(crate) enum InferStreamResponse {
|
||||
// Optional first message
|
||||
|
|
|
@ -3,8 +3,9 @@ use crate::infer::InferStreamResponse;
|
|||
use crate::validation::ValidGenerateRequest;
|
||||
use nohash_hasher::{BuildNoHashHasher, IntMap};
|
||||
use std::cmp::min;
|
||||
use std::collections::VecDeque;
|
||||
use text_generation_client::{Batch, Request};
|
||||
use tokio::sync::{oneshot, OwnedSemaphorePermit};
|
||||
use tokio::sync::oneshot;
|
||||
use tokio::time::Instant;
|
||||
use tracing::{info_span, instrument, Span};
|
||||
|
||||
|
@ -23,8 +24,6 @@ pub(crate) struct Entry {
|
|||
pub queue_time: Instant,
|
||||
/// Instant when this entry was added to a batch
|
||||
pub batch_time: Option<Instant>,
|
||||
/// Permit
|
||||
pub _permit: OwnedSemaphorePermit,
|
||||
}
|
||||
|
||||
/// Request Queue
|
||||
|
@ -104,7 +103,7 @@ async fn queue_task(receiver: flume::Receiver<QueueCommand>) {
|
|||
#[derive(Debug)]
|
||||
struct State {
|
||||
/// Queue entries organized in a Vec
|
||||
entries: Vec<(u64, Entry)>,
|
||||
entries: VecDeque<(u64, Entry)>,
|
||||
|
||||
/// Id of the next entry
|
||||
next_id: u64,
|
||||
|
@ -116,7 +115,7 @@ struct State {
|
|||
impl State {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
entries: Vec::with_capacity(128),
|
||||
entries: VecDeque::with_capacity(128),
|
||||
next_id: 0,
|
||||
next_batch_id: 0,
|
||||
}
|
||||
|
@ -129,7 +128,7 @@ impl State {
|
|||
entry.temp_span = Some(queue_span);
|
||||
|
||||
// Push entry in the queue
|
||||
self.entries.push((self.next_id, entry));
|
||||
self.entries.push_back((self.next_id, entry));
|
||||
self.next_id += 1;
|
||||
metrics::increment_gauge!("tgi_queue_size", 1.0);
|
||||
}
|
||||
|
@ -147,23 +146,27 @@ impl State {
|
|||
}
|
||||
}
|
||||
|
||||
let next_batch_size = min(self.entries.len(), max_size);
|
||||
let max_batch_size = min(self.entries.len(), max_size);
|
||||
|
||||
// Create span for this batch to add context to inference calls
|
||||
let next_batch_span = info_span!(parent: None, "batch", batch_size = next_batch_size);
|
||||
let next_batch_span = info_span!(parent: None, "batch", batch_size = tracing::field::Empty);
|
||||
next_batch_span.follows_from(&Span::current());
|
||||
|
||||
let mut batch_requests = Vec::with_capacity(next_batch_size);
|
||||
let mut batch_requests = Vec::with_capacity(max_batch_size);
|
||||
let mut batch_entries =
|
||||
IntMap::with_capacity_and_hasher(next_batch_size, BuildNoHashHasher::default());
|
||||
IntMap::with_capacity_and_hasher(max_batch_size, BuildNoHashHasher::default());
|
||||
|
||||
// Iterate on buffer
|
||||
while let Some((id, mut entry)) = self.entries.pop_front() {
|
||||
// Filter entries where the response receiver was dropped (== entries where the request
|
||||
// was dropped by the client)
|
||||
if entry.response_tx.is_disconnected() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
continue;
|
||||
}
|
||||
|
||||
// Drain next_batch_size entries
|
||||
self.entries
|
||||
.drain(..next_batch_size)
|
||||
.for_each(|(id, mut entry)| {
|
||||
// Create a new span to link the batch back to this entry
|
||||
let entry_batch_span =
|
||||
info_span!(parent: &entry.span, "infer", batch_size = next_batch_size);
|
||||
let entry_batch_span = info_span!(parent: &entry.span, "infer");
|
||||
// Add relationships
|
||||
next_batch_span.follows_from(&entry_batch_span);
|
||||
entry_batch_span.follows_from(&next_batch_span);
|
||||
|
@ -181,17 +184,32 @@ impl State {
|
|||
entry.batch_time = Some(Instant::now());
|
||||
// Insert in batch_entries IntMap
|
||||
batch_entries.insert(id, entry);
|
||||
});
|
||||
|
||||
if batch_requests.len() == max_batch_size {
|
||||
// We have enough requests in the batch
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
metrics::gauge!("tgi_queue_size", self.entries.len() as f64);
|
||||
|
||||
// Maybe all entries were dropped because their channel were closed
|
||||
if batch_requests.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
// Final batch size once we dropped entries
|
||||
let size = batch_requests.len() as u32;
|
||||
next_batch_span.record("batch_size", size);
|
||||
|
||||
let batch = Batch {
|
||||
id: self.next_batch_id,
|
||||
requests: batch_requests,
|
||||
size: next_batch_size as u32,
|
||||
size,
|
||||
};
|
||||
// Increment batch id
|
||||
self.next_batch_id += 1;
|
||||
|
||||
metrics::gauge!("tgi_queue_size", self.entries.len() as f64);
|
||||
metrics::histogram!("tgi_batch_next_size", batch.size as f64);
|
||||
Some((batch_entries, batch, next_batch_span))
|
||||
}
|
||||
|
@ -213,17 +231,16 @@ enum QueueCommand {
|
|||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use std::sync::Arc;
|
||||
use text_generation_client::{NextTokenChooserParameters, StoppingCriteriaParameters};
|
||||
use tokio::sync::Semaphore;
|
||||
use tracing::info_span;
|
||||
|
||||
fn default_entry() -> Entry {
|
||||
let semaphore = Arc::new(Semaphore::new(1));
|
||||
let (response_tx, _) = flume::unbounded();
|
||||
let permit = semaphore.try_acquire_owned().unwrap();
|
||||
fn default_entry() -> (
|
||||
Entry,
|
||||
flume::Receiver<Result<InferStreamResponse, InferError>>,
|
||||
) {
|
||||
let (response_tx, receiver_tx) = flume::unbounded();
|
||||
|
||||
Entry {
|
||||
let entry = Entry {
|
||||
request: ValidGenerateRequest {
|
||||
inputs: "".to_string(),
|
||||
truncate: 0,
|
||||
|
@ -248,14 +265,14 @@ mod tests {
|
|||
temp_span: None,
|
||||
queue_time: Instant::now(),
|
||||
batch_time: None,
|
||||
_permit: permit,
|
||||
}
|
||||
};
|
||||
(entry, receiver_tx)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_append() {
|
||||
let mut state = State::new();
|
||||
let entry = default_entry();
|
||||
let (entry, _guard) = default_entry();
|
||||
|
||||
assert_eq!(state.next_id, 0);
|
||||
assert_eq!(state.entries.len(), 0);
|
||||
|
@ -264,7 +281,7 @@ mod tests {
|
|||
|
||||
assert_eq!(state.next_id, 1);
|
||||
assert_eq!(state.entries.len(), 1);
|
||||
let (id, _) = state.entries.remove(0);
|
||||
let (id, _) = state.entries.remove(0).unwrap();
|
||||
assert_eq!(id, 0);
|
||||
}
|
||||
|
||||
|
@ -279,8 +296,10 @@ mod tests {
|
|||
#[test]
|
||||
fn test_next_batch_min_size() {
|
||||
let mut state = State::new();
|
||||
state.append(default_entry());
|
||||
state.append(default_entry());
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
state.append(entry1);
|
||||
state.append(entry2);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, 2).unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
|
@ -295,21 +314,24 @@ mod tests {
|
|||
assert_eq!(state.entries.len(), 0);
|
||||
assert_eq!(state.next_batch_id, 1);
|
||||
|
||||
state.append(default_entry());
|
||||
let (entry3, _guard3) = default_entry();
|
||||
state.append(entry3);
|
||||
|
||||
assert!(state.next_batch(Some(2), 2).is_none());
|
||||
|
||||
assert_eq!(state.next_id, 3);
|
||||
assert_eq!(state.entries.len(), 1);
|
||||
let (id, _) = state.entries.remove(0);
|
||||
let (id, _) = state.entries.remove(0).unwrap();
|
||||
assert_eq!(id, 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_next_batch_max_size() {
|
||||
let mut state = State::new();
|
||||
state.append(default_entry());
|
||||
state.append(default_entry());
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
state.append(entry1);
|
||||
state.append(entry2);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, 1).unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
|
@ -321,7 +343,8 @@ mod tests {
|
|||
assert_eq!(state.entries.len(), 1);
|
||||
assert_eq!(state.next_batch_id, 1);
|
||||
|
||||
state.append(default_entry());
|
||||
let (entry3, _guard3) = default_entry();
|
||||
state.append(entry3);
|
||||
|
||||
let (entries, batch, _) = state.next_batch(None, 3).unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
|
@ -338,7 +361,8 @@ mod tests {
|
|||
#[tokio::test]
|
||||
async fn test_queue_append() {
|
||||
let queue = Queue::new();
|
||||
queue.append(default_entry());
|
||||
let (entry, _guard) = default_entry();
|
||||
queue.append(entry);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
|
@ -352,8 +376,10 @@ mod tests {
|
|||
#[tokio::test]
|
||||
async fn test_queue_next_batch_min_size() {
|
||||
let queue = Queue::new();
|
||||
queue.append(default_entry());
|
||||
queue.append(default_entry());
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, 2).await.unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
|
@ -364,7 +390,8 @@ mod tests {
|
|||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 2);
|
||||
|
||||
queue.append(default_entry());
|
||||
let (entry3, _guard3) = default_entry();
|
||||
queue.append(entry3);
|
||||
|
||||
assert!(queue.next_batch(Some(2), 2).await.is_none());
|
||||
}
|
||||
|
@ -372,8 +399,10 @@ mod tests {
|
|||
#[tokio::test]
|
||||
async fn test_queue_next_batch_max_size() {
|
||||
let queue = Queue::new();
|
||||
queue.append(default_entry());
|
||||
queue.append(default_entry());
|
||||
let (entry1, _guard1) = default_entry();
|
||||
let (entry2, _guard2) = default_entry();
|
||||
queue.append(entry1);
|
||||
queue.append(entry2);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, 1).await.unwrap();
|
||||
assert_eq!(entries.len(), 1);
|
||||
|
@ -381,7 +410,8 @@ mod tests {
|
|||
assert_eq!(batch.id, 0);
|
||||
assert_eq!(batch.size, 1);
|
||||
|
||||
queue.append(default_entry());
|
||||
let (entry3, _guard3) = default_entry();
|
||||
queue.append(entry3);
|
||||
|
||||
let (entries, batch, _) = queue.next_batch(None, 3).await.unwrap();
|
||||
assert_eq!(entries.len(), 2);
|
||||
|
@ -390,4 +420,13 @@ mod tests {
|
|||
assert_eq!(batch.id, 1);
|
||||
assert_eq!(batch.size, 2);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_queue_next_batch_dropped_receiver() {
|
||||
let queue = Queue::new();
|
||||
let (entry, _) = default_entry();
|
||||
queue.append(entry);
|
||||
|
||||
assert!(queue.next_batch(None, 1).await.is_none());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -367,7 +367,8 @@ async fn generate_stream(
|
|||
let best_of = req.0.parameters.best_of.unwrap_or(1);
|
||||
if best_of == 1 {
|
||||
match infer.generate_stream(req.0).instrument(info_span!(parent: &span, "async_stream")).await {
|
||||
Ok(mut response_stream) => {
|
||||
// Keep permit as long as generate_stream lives
|
||||
Ok((_permit, mut response_stream)) => {
|
||||
// Server-Sent Event stream
|
||||
while let Some(response) = response_stream.next().await {
|
||||
match response {
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
include Makefile-transformers
|
||||
include Makefile-flash-att
|
||||
|
||||
unit-tests:
|
||||
python -m pytest tests
|
||||
|
||||
gen-server:
|
||||
# Compile protos
|
||||
pip install grpcio-tools==1.51.1 mypy-protobuf==3.4.0 'types-protobuf>=3.20.4' --no-cache-dir
|
||||
|
|
|
@ -45,8 +45,9 @@ def default_bloom_batch(default_pb_batch, bloom_560m_tokenizer):
|
|||
@pytest.fixture
|
||||
def default_multi_requests_bloom_batch(default_pb_request, bloom_560m_tokenizer):
|
||||
req_0 = copy(default_pb_request)
|
||||
req_0.id = 1
|
||||
req_1 = default_pb_request
|
||||
req_1.id = 1
|
||||
req_1.id = 2
|
||||
req_1.stopping_parameters.max_new_tokens = 5
|
||||
|
||||
batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2)
|
||||
|
@ -70,12 +71,17 @@ def test_batch_from_pb(default_pb_batch, default_bloom_batch):
|
|||
|
||||
assert batch.past_key_values is None
|
||||
|
||||
assert torch.equal(batch.input_ids, batch.all_input_ids[:, :, 0])
|
||||
assert all(
|
||||
[
|
||||
torch.equal(input_ids, all_input_ids[:, 0])
|
||||
for input_ids, all_input_ids in zip(batch.input_ids, batch.all_input_ids)
|
||||
]
|
||||
)
|
||||
|
||||
assert batch.input_lengths == [1]
|
||||
|
||||
assert batch.size == default_pb_batch.size
|
||||
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == batch.size
|
||||
assert len(batch) == default_pb_batch.size
|
||||
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch)
|
||||
|
||||
assert batch.max_input_length == batch.input_lengths[0]
|
||||
|
||||
|
@ -97,7 +103,7 @@ def test_causal_lm_generate_token(default_bloom, default_bloom_batch):
|
|||
assert isinstance(next_batch, CausalLMBatch)
|
||||
assert not next_batch.keys_head_dim_last
|
||||
|
||||
assert len(next_batch.all_input_ids) == next_batch.size
|
||||
assert len(next_batch.all_input_ids) == len(next_batch)
|
||||
assert len(next_batch.all_input_ids[0]) == sequence_length + 1
|
||||
assert len(next_batch.attention_mask[0]) == 11
|
||||
assert torch.all(next_batch.all_input_ids[0][-2:] == 10264)
|
||||
|
@ -106,7 +112,7 @@ def test_causal_lm_generate_token(default_bloom, default_bloom_batch):
|
|||
assert torch.all(next_batch.attention_mask[0][:2] == 1)
|
||||
assert torch.all(next_batch.attention_mask[0][2:] == 0)
|
||||
|
||||
assert next_batch.input_ids.shape == (next_batch.size, 1)
|
||||
assert next_batch.input_ids.shape == (len(next_batch), 1)
|
||||
assert next_batch.input_ids[0, 0] == 10264
|
||||
|
||||
assert next_batch.input_lengths == [2]
|
||||
|
@ -170,6 +176,8 @@ def test_causal_lm_generate_token_completion_multi(
|
|||
== default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[0]])
|
||||
|
||||
for _ in range(
|
||||
default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens
|
||||
- default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens
|
||||
|
@ -269,6 +277,8 @@ def test_batch_concatenate(
|
|||
== default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[0], next_batch.requests[1]])
|
||||
|
||||
for _ in range(
|
||||
default_bloom_batch.stopping_criterias[0].max_new_tokens
|
||||
- default_multi_requests_bloom_batch.stopping_criterias[1].max_new_tokens
|
||||
|
@ -290,6 +300,8 @@ def test_batch_concatenate(
|
|||
== default_bloom_batch.stopping_criterias[0].max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[1]])
|
||||
|
||||
for _ in range(
|
||||
default_multi_requests_bloom_batch.stopping_criterias[0].max_new_tokens
|
||||
- default_bloom_batch.stopping_criterias[0].max_new_tokens
|
||||
|
|
|
@ -44,11 +44,12 @@ def default_causal_lm_batch(default_pb_batch, gpt2_tokenizer):
|
|||
@pytest.fixture
|
||||
def default_multi_requests_causal_lm_batch(default_pb_request, gpt2_tokenizer):
|
||||
req_0 = copy(default_pb_request)
|
||||
req_0.id = 1
|
||||
req_1 = default_pb_request
|
||||
req_1.id = 1
|
||||
req_1.id = 2
|
||||
req_1.stopping_parameters.max_new_tokens = 5
|
||||
|
||||
batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2)
|
||||
batch_pb = generate_pb2.Batch(id=1, requests=[req_0, req_1], size=2)
|
||||
return CausalLMBatch.from_pb(batch_pb, gpt2_tokenizer, torch.device("cpu"))
|
||||
|
||||
|
||||
|
@ -67,12 +68,17 @@ def test_batch_from_pb(default_pb_batch, default_causal_lm_batch):
|
|||
|
||||
assert batch.past_key_values is None
|
||||
|
||||
assert torch.equal(batch.input_ids, batch.all_input_ids[:, :, 0])
|
||||
assert all(
|
||||
[
|
||||
torch.equal(input_ids, all_input_ids[:, 0])
|
||||
for input_ids, all_input_ids in zip(batch.input_ids, batch.all_input_ids)
|
||||
]
|
||||
)
|
||||
|
||||
assert batch.input_lengths == [1]
|
||||
|
||||
assert batch.size == default_pb_batch.size
|
||||
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == batch.size
|
||||
assert len(batch) == default_pb_batch.size
|
||||
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch)
|
||||
|
||||
assert batch.max_input_length == batch.input_lengths[0]
|
||||
|
||||
|
@ -93,7 +99,7 @@ def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch):
|
|||
assert len(generations) == len(next_batch)
|
||||
assert isinstance(next_batch, CausalLMBatch)
|
||||
|
||||
assert len(next_batch.all_input_ids) == next_batch.size
|
||||
assert len(next_batch.all_input_ids) == len(next_batch)
|
||||
assert len(next_batch.all_input_ids[0]) == sequence_length + 1
|
||||
assert len(next_batch.attention_mask[0]) == 11
|
||||
assert next_batch.all_input_ids[0][-1] == 13
|
||||
|
@ -103,7 +109,7 @@ def test_causal_lm_generate_token(default_causal_lm, default_causal_lm_batch):
|
|||
assert torch.all(next_batch.attention_mask[0][0:2] == 1)
|
||||
assert torch.all(next_batch.attention_mask[0][2:] == 0)
|
||||
|
||||
assert next_batch.input_ids.shape == (next_batch.size, 1)
|
||||
assert next_batch.input_ids.shape == (len(next_batch), 1)
|
||||
assert next_batch.input_ids[0, 0] == 13
|
||||
|
||||
assert next_batch.input_lengths == [2]
|
||||
|
@ -168,6 +174,8 @@ def test_causal_lm_generate_token_completion_multi(
|
|||
== default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[0]])
|
||||
|
||||
for _ in range(
|
||||
default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
||||
- default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
||||
|
@ -266,6 +274,8 @@ def test_batch_concatenate(
|
|||
== default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[0], next_batch.requests[1]])
|
||||
|
||||
for _ in range(
|
||||
default_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
||||
- default_multi_requests_causal_lm_batch.stopping_criterias[1].max_new_tokens
|
||||
|
@ -285,6 +295,8 @@ def test_batch_concatenate(
|
|||
== default_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
||||
)
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[1]])
|
||||
|
||||
for _ in range(
|
||||
default_multi_requests_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
||||
- default_causal_lm_batch.stopping_criterias[0].max_new_tokens
|
||||
|
|
|
@ -49,8 +49,9 @@ def default_seq2seq_lm_batch(default_pb_batch, mt0_small_tokenizer):
|
|||
@pytest.fixture
|
||||
def default_multi_requests_seq2seq_lm_batch(default_pb_request, mt0_small_tokenizer):
|
||||
req_0 = copy(default_pb_request)
|
||||
req_0.id = 1
|
||||
req_1 = default_pb_request
|
||||
req_1.id = 1
|
||||
req_1.id = 2
|
||||
req_1.stopping_parameters.max_new_tokens = 5
|
||||
|
||||
batch_pb = generate_pb2.Batch(id=0, requests=[req_0, req_1], size=2)
|
||||
|
@ -72,7 +73,7 @@ def test_batch_from_pb(default_pb_batch, default_seq2seq_lm_batch):
|
|||
assert torch.all(batch.attention_mask[0][-2:] == 1)
|
||||
assert torch.all(batch.attention_mask[0][:-2] == 0)
|
||||
|
||||
assert batch.decoder_input_ids.shape == (default_pb_batch.size, 1)
|
||||
assert len(batch.decoder_input_ids) == default_pb_batch.size
|
||||
assert batch.decoder_attention_mask is None
|
||||
assert batch.encoder_last_hidden_state is None
|
||||
|
||||
|
@ -81,8 +82,8 @@ def test_batch_from_pb(default_pb_batch, default_seq2seq_lm_batch):
|
|||
assert batch.input_lengths == [2]
|
||||
assert batch.decoder_input_lengths == [1]
|
||||
|
||||
assert batch.size == default_pb_batch.size
|
||||
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == batch.size
|
||||
assert len(batch) == default_pb_batch.size
|
||||
assert len(batch.next_token_choosers) == len(batch.stopping_criterias) == len(batch)
|
||||
|
||||
assert batch.max_input_length == batch.input_lengths[0]
|
||||
assert batch.max_decoder_input_length == batch.decoder_input_lengths[0]
|
||||
|
@ -117,9 +118,9 @@ def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch)
|
|||
)
|
||||
assert next_batch.stopping_criterias == default_seq2seq_lm_batch.stopping_criterias
|
||||
|
||||
assert next_batch.decoder_input_ids.shape == (next_batch.size, 2)
|
||||
assert next_batch.decoder_input_ids[0, 0] == 0
|
||||
assert next_batch.decoder_input_ids[0, 1] == 259
|
||||
assert len(next_batch.decoder_input_ids) == len(next_batch)
|
||||
assert next_batch.all_decoder_input_ids[0][0] == 0
|
||||
assert next_batch.all_decoder_input_ids[0][1] == 259
|
||||
assert next_batch.decoder_attention_mask is None
|
||||
assert next_batch.encoder_last_hidden_state.shape == (1, sequence_length, 512)
|
||||
|
||||
|
@ -128,20 +129,20 @@ def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch)
|
|||
|
||||
assert next_batch.past_key_values is not None
|
||||
assert all(
|
||||
[p[0].shape == (next_batch.size, 6, 1, 64) for p in next_batch.past_key_values]
|
||||
[p[0].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values]
|
||||
)
|
||||
assert all(
|
||||
[p[1].shape == (next_batch.size, 6, 1, 64) for p in next_batch.past_key_values]
|
||||
[p[1].shape == (len(next_batch), 6, 1, 64) for p in next_batch.past_key_values]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
p[2].shape == (next_batch.size, 6, sequence_length, 64)
|
||||
p[2].shape == (len(next_batch), 6, sequence_length, 64)
|
||||
for p in next_batch.past_key_values
|
||||
]
|
||||
)
|
||||
assert all(
|
||||
[
|
||||
p[3].shape == (next_batch.size, 6, sequence_length, 64)
|
||||
p[3].shape == (len(next_batch), 6, sequence_length, 64)
|
||||
for p in next_batch.past_key_values
|
||||
]
|
||||
)
|
||||
|
@ -189,6 +190,8 @@ def test_seq2seq_lm_generate_token_completion_multi(
|
|||
)
|
||||
assert generations[1].generated_text.generated_tokens == 5
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[0]])
|
||||
|
||||
generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
|
||||
assert len(generations) == len(next_batch)
|
||||
|
||||
|
@ -223,7 +226,8 @@ def test_batch_concatenate(
|
|||
assert torch.equal(
|
||||
next_batch.decoder_input_ids[0], next_batch_0.decoder_input_ids[0]
|
||||
)
|
||||
assert torch.all(next_batch.decoder_input_ids[1:, 0] == 0)
|
||||
assert next_batch.all_decoder_input_ids[1][0] == 0
|
||||
assert next_batch.all_decoder_input_ids[2][0] == 0
|
||||
assert torch.equal(
|
||||
next_batch.decoder_input_ids[1:, -2:], next_batch_1.decoder_input_ids
|
||||
)
|
||||
|
@ -258,16 +262,16 @@ def test_batch_concatenate(
|
|||
|
||||
assert next_batch.past_key_values is not None
|
||||
assert all(
|
||||
[p[0].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
|
||||
[p[0].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
|
||||
)
|
||||
assert all(
|
||||
[p[1].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
|
||||
[p[1].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
|
||||
)
|
||||
assert all(
|
||||
[p[2].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
|
||||
[p[2].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
|
||||
)
|
||||
assert all(
|
||||
[p[3].shape == (next_batch.size, 6, 2, 64) for p in next_batch.past_key_values]
|
||||
[p[3].shape == (len(next_batch), 6, 2, 64) for p in next_batch.past_key_values]
|
||||
)
|
||||
|
||||
for i, past in enumerate(next_batch.past_key_values):
|
||||
|
@ -306,6 +310,8 @@ def test_batch_concatenate(
|
|||
)
|
||||
assert generations[2].generated_text.generated_tokens == 5
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[0], next_batch.requests[1]])
|
||||
|
||||
generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
|
||||
assert next_batch is not None
|
||||
|
||||
|
@ -314,6 +320,8 @@ def test_batch_concatenate(
|
|||
assert generations[0].request_id == default_seq2seq_lm_batch.requests[0].id
|
||||
assert generations[0].generated_text.generated_tokens == 7
|
||||
|
||||
next_batch = next_batch.filter([next_batch.requests[1]])
|
||||
|
||||
generations, next_batch = default_seq2seq_lm.generate_token(next_batch)
|
||||
assert next_batch is None
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ import torch
|
|||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
|
||||
from typing import Optional, Tuple, List, Type
|
||||
from typing import Optional, Tuple, List, Type, Dict
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.types import (
|
||||
|
@ -22,6 +22,7 @@ tracer = trace.get_tracer(__name__)
|
|||
class CausalLMBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
requests_idx_mapping: Dict[int, int]
|
||||
|
||||
# Decoder values
|
||||
input_ids: torch.Tensor
|
||||
|
@ -42,7 +43,6 @@ class CausalLMBatch(Batch):
|
|||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
# Metadata used for padding
|
||||
size: int
|
||||
max_input_length: int
|
||||
padding_right_offset: int
|
||||
|
||||
|
@ -53,7 +53,7 @@ class CausalLMBatch(Batch):
|
|||
return generate_pb2.Batch(
|
||||
id=self.batch_id,
|
||||
requests=self.requests,
|
||||
size=self.size,
|
||||
size=len(self),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
@ -68,11 +68,13 @@ class CausalLMBatch(Batch):
|
|||
stopping_criterias = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
padding_right_offset = 0
|
||||
for r in pb.requests:
|
||||
for i, r in enumerate(pb.requests):
|
||||
requests_idx_mapping[r.id] = i
|
||||
inputs.append(r.inputs)
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
|
@ -108,26 +110,91 @@ class CausalLMBatch(Batch):
|
|||
|
||||
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
||||
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
|
||||
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=None,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids=list(all_input_ids),
|
||||
input_lengths=input_lengths.tolist(),
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=pb.size,
|
||||
max_input_length=max_input_length.item(),
|
||||
padding_right_offset=padding_right_offset,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("filter")
|
||||
def filter(self, requests: List[generate_pb2.Request]) -> Optional["CausalLMBatch"]:
|
||||
if len(requests) == 0:
|
||||
raise ValueError("Batch must have at least one request")
|
||||
if len(requests) == len(self):
|
||||
return self
|
||||
|
||||
keep_indices = []
|
||||
|
||||
# New values after filtering
|
||||
requests_idx_mapping = {}
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
all_input_ids = []
|
||||
max_input_length = 0
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
for i, r in enumerate(requests):
|
||||
idx = self.requests_idx_mapping[r.id]
|
||||
requests_idx_mapping[r.id] = i
|
||||
keep_indices.append(idx)
|
||||
|
||||
offsets.append(self.offsets[idx])
|
||||
token_offsets.append(self.token_offsets[idx])
|
||||
all_input_ids.append(self.all_input_ids[idx])
|
||||
|
||||
request_input_length = self.input_lengths[idx]
|
||||
input_lengths.append(request_input_length)
|
||||
max_input_length = max(max_input_length, request_input_length)
|
||||
|
||||
next_token_choosers.append(self.next_token_choosers[idx])
|
||||
stopping_criterias.append(self.stopping_criterias[idx])
|
||||
|
||||
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
|
||||
input_ids = self.input_ids[keep_indices]
|
||||
attention_mask = self.attention_mask[keep_indices]
|
||||
position_ids = self.position_ids[keep_indices]
|
||||
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
|
||||
past_key_values = [
|
||||
[t.view(len(self), -1, *t.shape[-2:])[keep_indices] for t in layer]
|
||||
for layer in self.past_key_values
|
||||
]
|
||||
|
||||
return CausalLMBatch(
|
||||
batch_id=self.batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
all_input_ids=all_input_ids,
|
||||
input_lengths=input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
max_input_length=max_input_length,
|
||||
padding_right_offset=self.padding_right_offset,
|
||||
keys_head_dim_last=self.keys_head_dim_last,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
||||
|
@ -136,12 +203,13 @@ class CausalLMBatch(Batch):
|
|||
max_input_length = 0
|
||||
padding_right_offset = 0
|
||||
for batch in batches:
|
||||
total_batch_size += batch.size
|
||||
total_batch_size += len(batch)
|
||||
max_input_length = max(max_input_length, batch.max_input_length)
|
||||
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
|
||||
|
||||
# Batch attributes
|
||||
requests = []
|
||||
requests_idx_mapping = {}
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
|
@ -167,8 +235,15 @@ class CausalLMBatch(Batch):
|
|||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
if i == 0:
|
||||
requests_idx_mapping = batch.requests_idx_mapping
|
||||
else:
|
||||
# We need to offset the mapping for each batch by the cumulative batch size
|
||||
for k, v in batch.requests_idx_mapping.items():
|
||||
requests_idx_mapping[k] = v + start_index
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + batch.size
|
||||
end_index = start_index + len(batch)
|
||||
|
||||
# We only concatenate batches that did at least one step
|
||||
if batch.past_key_values is None:
|
||||
|
@ -216,8 +291,8 @@ class CausalLMBatch(Batch):
|
|||
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
|
||||
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
|
||||
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
|
||||
past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
|
||||
past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])
|
||||
past_keys = past_keys.view(len(batch), -1, *past_keys.shape[-2:])
|
||||
past_values = past_values.view(len(batch), -1, *past_values.shape[-2:])
|
||||
|
||||
_, num_heads, padded_sequence_length, head_dim = past_values.shape
|
||||
|
||||
|
@ -265,11 +340,12 @@ class CausalLMBatch(Batch):
|
|||
start_index:end_index, :, -(batch.max_input_length - 1) :, :
|
||||
] = past_values[:, :, -(batch.max_input_length - 1) :, :]
|
||||
|
||||
start_index += batch.size
|
||||
start_index += len(batch)
|
||||
|
||||
return cls(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
|
@ -280,7 +356,6 @@ class CausalLMBatch(Batch):
|
|||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
max_input_length=max_input_length,
|
||||
padding_right_offset=padding_right_offset,
|
||||
keys_head_dim_last=batches[0].keys_head_dim_last,
|
||||
|
@ -364,22 +439,9 @@ class CausalLM(Model):
|
|||
batch.past_key_values,
|
||||
)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New values for next forward
|
||||
next_batch_input_lengths = []
|
||||
next_batch_offsets = []
|
||||
next_batch_token_offsets = []
|
||||
next_batch_input_ids = []
|
||||
next_batch_all_input_ids = []
|
||||
|
||||
# Metadata
|
||||
next_batch_size = 0
|
||||
next_batch_max_input_length = 0
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
stopped = True
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
|
@ -443,16 +505,7 @@ class CausalLM(Model):
|
|||
else:
|
||||
# Keep request in the batch
|
||||
generated_text = None
|
||||
next_batch_keep_indices.append(i)
|
||||
next_batch_input_ids.append(next_token_id)
|
||||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_size += 1
|
||||
next_batch_input_lengths.append(new_input_length)
|
||||
next_batch_offsets.append(offset)
|
||||
next_batch_token_offsets.append(token_offset)
|
||||
next_batch_max_input_length = max(
|
||||
next_batch_max_input_length, new_input_length
|
||||
)
|
||||
stopped = False
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1:
|
||||
|
@ -484,62 +537,30 @@ class CausalLM(Model):
|
|||
|
||||
generations.append(generation)
|
||||
|
||||
# Update values
|
||||
batch.input_ids[i, 0] = next_token_id
|
||||
batch.all_input_ids[i] = all_input_ids
|
||||
batch.input_lengths[i] = new_input_length
|
||||
batch.offsets[i] = offset
|
||||
batch.token_offsets[i] = token_offset
|
||||
batch.max_input_length = max(batch.max_input_length, new_input_length)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
if stopped:
|
||||
return generations, None
|
||||
|
||||
next_batch_input_ids = torch.cat(next_batch_input_ids, dim=0)
|
||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||
# from the values of the next batch
|
||||
if len(next_batch_keep_indices) != len(batch):
|
||||
# Apply indices to attention mask, past key values and other items that need to be cached
|
||||
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
|
||||
next_batch_position_ids = batch.position_ids[next_batch_keep_indices]
|
||||
# Force past to be of dim [batch_size, num_heads, ...] for easy indexing
|
||||
next_batch_past_key_values = [
|
||||
[
|
||||
t.view(batch.size, -1, *t.shape[-2:])[next_batch_keep_indices]
|
||||
for t in layer
|
||||
]
|
||||
for layer in past
|
||||
]
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_attention_mask = batch.attention_mask
|
||||
next_batch_position_ids = batch.position_ids
|
||||
next_batch_past_key_values = past
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
# Slice unused values from prefill
|
||||
batch.input_ids = batch.input_ids[:, :1]
|
||||
|
||||
# Update attention_mask as we added a new token to input_ids
|
||||
next_batch_attention_mask[:, -batch.padding_right_offset] = 1
|
||||
batch.attention_mask[:, -batch.padding_right_offset] = 1
|
||||
# Decrease right offset
|
||||
batch.padding_right_offset -= 1
|
||||
|
||||
# Update position_ids
|
||||
next_batch_position_ids = next_batch_position_ids[:, -1:] + 1
|
||||
batch.position_ids = batch.position_ids[:, -1:] + 1
|
||||
|
||||
next_batch = CausalLMBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
input_ids=next_batch_input_ids,
|
||||
attention_mask=next_batch_attention_mask,
|
||||
position_ids=next_batch_position_ids,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
offsets=next_batch_offsets,
|
||||
token_offsets=next_batch_token_offsets,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
max_input_length=next_batch_max_input_length,
|
||||
padding_right_offset=batch.padding_right_offset - 1,
|
||||
keys_head_dim_last=batch.keys_head_dim_last,
|
||||
)
|
||||
return generations, next_batch
|
||||
# Update past key values
|
||||
batch.past_key_values = past
|
||||
|
||||
return generations, batch
|
||||
|
|
|
@ -6,7 +6,7 @@ from torch.nn import functional as F
|
|||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
|
||||
from typing import Optional, Tuple, List, Type, Union
|
||||
from typing import Optional, Tuple, List, Type, Union, Dict
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.types import (
|
||||
|
@ -29,14 +29,16 @@ tracer = trace.get_tracer(__name__)
|
|||
class FlashCausalLMBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
# request id -> idx in list mapping
|
||||
requests_idx_mapping: Dict[int, int]
|
||||
|
||||
# Decoder values
|
||||
input_ids: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
input_ids: List[torch.Tensor]
|
||||
position_ids: List[torch.Tensor]
|
||||
# cumulative sequence lengths
|
||||
cu_seqlens: torch.Tensor
|
||||
cu_seqlens: List[int]
|
||||
max_seqlen: int
|
||||
past_key_values: Optional[torch.Tensor]
|
||||
past_key_values: Optional[List[torch.Tensor]]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[List[int]]
|
||||
|
@ -62,7 +64,7 @@ class FlashCausalLMBatch(Batch):
|
|||
pb: generate_pb2.Batch,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
device: torch.device,
|
||||
) -> "CausalLMBatch":
|
||||
) -> "FlashCausalLMBatch":
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
|
@ -73,6 +75,7 @@ class FlashCausalLMBatch(Batch):
|
|||
token_offsets = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
@ -81,13 +84,18 @@ class FlashCausalLMBatch(Batch):
|
|||
cumulative_length = 0
|
||||
|
||||
# Parse batch
|
||||
for r in pb.requests:
|
||||
for i, r in enumerate(pb.requests):
|
||||
# request id -> idx in list mapping
|
||||
requests_idx_mapping[r.id] = i
|
||||
|
||||
tokenized_input = tokenizer(
|
||||
r.inputs, truncation=True, max_length=r.truncate
|
||||
)["input_ids"]
|
||||
|
||||
input_length = len(tokenized_input)
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
input_lengths.append(input_length)
|
||||
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
all_input_ids.append(tokenized_input)
|
||||
|
@ -96,7 +104,9 @@ class FlashCausalLMBatch(Batch):
|
|||
input_ids.append(tokenized_input)
|
||||
|
||||
# Position ids
|
||||
position_ids.append(torch.arange(0, input_length, dtype=torch.int32))
|
||||
position_ids.append(
|
||||
torch.arange(0, input_length, dtype=torch.int32, device=device)
|
||||
)
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(cumulative_length + input_length)
|
||||
|
@ -113,13 +123,10 @@ class FlashCausalLMBatch(Batch):
|
|||
# Update
|
||||
cumulative_length += input_length
|
||||
|
||||
input_ids = torch.concat(input_ids)
|
||||
position_ids = torch.concat(position_ids)
|
||||
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
|
@ -134,60 +141,141 @@ class FlashCausalLMBatch(Batch):
|
|||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("filter")
|
||||
def filter(self, requests: List[generate_pb2.Request]) -> "FlashCausalLMBatch":
|
||||
if len(requests) == 0:
|
||||
raise ValueError("Batch must have at least one request")
|
||||
# We assume that if len(requests) == len(self) then the requests are the same
|
||||
if len(requests) == len(self):
|
||||
return self
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# New values after filtering
|
||||
requests_idx_mapping = {}
|
||||
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
for i, r in enumerate(requests):
|
||||
idx = self.requests_idx_mapping[r.id]
|
||||
requests_idx_mapping[r.id] = i
|
||||
|
||||
# Get length
|
||||
request_input_length = self.input_lengths[idx]
|
||||
|
||||
input_ids.append(self.input_ids[idx])
|
||||
position_ids.append(self.position_ids[idx])
|
||||
cu_seqlens.append(cumulative_length + request_input_length)
|
||||
max_seqlen = max(max_seqlen, request_input_length)
|
||||
past_key_values.append(self.past_key_values[idx])
|
||||
|
||||
all_input_ids.append(self.all_input_ids[idx])
|
||||
all_input_ids_tensor.append(self.all_input_ids_tensor[idx])
|
||||
|
||||
input_lengths.append(request_input_length)
|
||||
offsets.append(self.offsets[idx])
|
||||
token_offsets.append(self.token_offsets[idx])
|
||||
|
||||
next_token_choosers.append(self.next_token_choosers[idx])
|
||||
stopping_criterias.append(self.stopping_criterias[idx])
|
||||
|
||||
cumulative_length += request_input_length
|
||||
|
||||
return FlashCausalLMBatch(
|
||||
batch_id=self.batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
|
||||
# Batch attributes
|
||||
requests = []
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
# Batch tensors
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [torch.tensor([0], dtype=torch.int32)]
|
||||
cu_seqlens = [0]
|
||||
max_seqlen = 0
|
||||
past_key_values = []
|
||||
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = torch.tensor(0)
|
||||
cumulative_batch_size = 0
|
||||
cumulative_length = 0
|
||||
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
|
||||
if i == 0:
|
||||
requests_idx_mapping = batch.requests_idx_mapping
|
||||
else:
|
||||
# We need to offset the mapping for each batch by the cumulative batch size
|
||||
for k, v in batch.requests_idx_mapping.items():
|
||||
requests_idx_mapping[k] = v + cumulative_batch_size
|
||||
|
||||
input_ids.extend(batch.input_ids)
|
||||
position_ids.extend(batch.position_ids)
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.extend([l + cumulative_length for l in batch.cu_seqlens[1:]])
|
||||
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
||||
past_key_values.extend(batch.past_key_values)
|
||||
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
|
||||
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
offsets.extend(batch.offsets)
|
||||
token_offsets.extend(batch.token_offsets)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
|
||||
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Add cumulative lengths of all previous inputs
|
||||
cu_seqlens.append(batch.cu_seqlens[1:] + cumulative_length)
|
||||
|
||||
input_ids.append(batch.input_ids)
|
||||
position_ids.append(batch.position_ids)
|
||||
past_key_values.append(batch.past_key_values)
|
||||
|
||||
max_seqlen = max(max_seqlen, batch.max_seqlen)
|
||||
|
||||
# Update
|
||||
cumulative_length += batch.cu_seqlens[-1]
|
||||
|
||||
input_ids = torch.concat(input_ids)
|
||||
position_ids = torch.concat(position_ids)
|
||||
# Concat on dim=1 as first dim represents the model layers
|
||||
past_key_values = torch.concat(past_key_values, dim=1)
|
||||
cu_seqlens = torch.concat(cu_seqlens)
|
||||
cumulative_batch_size += len(batch)
|
||||
|
||||
return FlashCausalLMBatch(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
|
@ -269,38 +357,49 @@ class FlashCausalLM(Model):
|
|||
def generate_token(
|
||||
self, batch: FlashCausalLMBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
|
||||
# Better to send to device here to avoid device issues in concatenate
|
||||
position_ids = batch.position_ids.to(self.device, non_blocking=True)
|
||||
cu_seqlens = batch.cu_seqlens.to(self.device)
|
||||
# Shortcut when batch_size == 1
|
||||
if len(batch) == 1:
|
||||
input_ids = batch.input_ids[0].view(-1)
|
||||
past_key_values = (
|
||||
batch.past_key_values[0] if batch.past_key_values is not None else None
|
||||
)
|
||||
else:
|
||||
# Concatenate tensors
|
||||
input_ids = torch.cat(batch.input_ids).view(-1)
|
||||
past_key_values = (
|
||||
torch.cat(batch.past_key_values, dim=1)
|
||||
if batch.past_key_values is not None
|
||||
else None
|
||||
)
|
||||
|
||||
# Concatenate when prefill, torch.tensor when decode
|
||||
position_ids = (
|
||||
torch.tensor(batch.position_ids, device=self.device)
|
||||
if batch.past_key_values is not None
|
||||
else torch.cat(batch.position_ids)
|
||||
)
|
||||
cu_seqlens = torch.tensor(
|
||||
batch.cu_seqlens, device=self.device, dtype=torch.int32
|
||||
)
|
||||
|
||||
out, present = self.forward(
|
||||
batch.input_ids,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
batch.max_seqlen,
|
||||
batch.past_key_values,
|
||||
past_key_values,
|
||||
)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New values for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_position_ids = []
|
||||
next_batch_cu_seqlens = [0]
|
||||
next_batch_max_seqlen = 0
|
||||
next_batch_past_key_values = []
|
||||
next_batch_input_lengths = []
|
||||
next_batch_offsets = []
|
||||
next_batch_token_offsets = []
|
||||
next_batch_all_input_ids = []
|
||||
next_batch_all_input_ids_tensor = []
|
||||
# Initialize past_key_values in prefill
|
||||
if batch.past_key_values is None:
|
||||
batch.past_key_values = [None] * len(batch)
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
stopped = True
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
|
@ -329,7 +428,8 @@ class FlashCausalLM(Model):
|
|||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
if batch.past_key_values is None:
|
||||
prefill = stopping_criteria.current_tokens == 0
|
||||
if prefill:
|
||||
# Prefill mode
|
||||
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
||||
logits = out[start_index:end_index]
|
||||
|
@ -348,7 +448,6 @@ class FlashCausalLM(Model):
|
|||
# Append next token to all tokens
|
||||
all_input_ids.append(next_token_id_item)
|
||||
all_input_ids_tensor[input_length] = next_token_id_item
|
||||
new_input_length = input_length + 1
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id_item]
|
||||
|
@ -378,32 +477,23 @@ class FlashCausalLM(Model):
|
|||
generated_text = GeneratedText(
|
||||
output_text, stopping_criteria.current_tokens, reason, seed
|
||||
)
|
||||
|
||||
# CAUTION: generation will be stopped so no need to pad
|
||||
# This will make the next forward crash if the request does not get filtered
|
||||
new_input_length = input_length
|
||||
past = present[:, start_index:end_index]
|
||||
else:
|
||||
# Keep request in the batch
|
||||
next_batch_keep_indices.append(i)
|
||||
stopped = False
|
||||
generated_text = None
|
||||
|
||||
# Get sequence present
|
||||
seq_present = present[:, start_index:end_index]
|
||||
# Pad it for next iter attention
|
||||
past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
|
||||
next_batch_past_key_values.append(past)
|
||||
|
||||
next_batch_input_ids.append(next_token_id)
|
||||
next_batch_position_ids.append(input_length)
|
||||
# Cumulative sum
|
||||
next_batch_cu_seqlens.append(
|
||||
next_batch_cu_seqlens[-1] + new_input_length
|
||||
# Pad present for next iter attention
|
||||
new_input_length = input_length + 1
|
||||
past = torch.nn.functional.pad(
|
||||
present[:, start_index:end_index], (0, 0, 0, 0, 0, 0, 0, 1)
|
||||
)
|
||||
next_batch_input_lengths.append(new_input_length)
|
||||
next_batch_offsets.append(offset)
|
||||
next_batch_token_offsets.append(token_offset)
|
||||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_all_input_ids_tensor.append(all_input_ids_tensor)
|
||||
next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1:
|
||||
if prefill:
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
prefill_logprobs = [float("nan")] + logprobs.gather(
|
||||
1, all_input_ids_tensor[1:input_length].unsqueeze(1)
|
||||
|
@ -433,52 +523,18 @@ class FlashCausalLM(Model):
|
|||
generations.append(generation)
|
||||
cumulative_length += input_length
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generations, None
|
||||
# Update values
|
||||
batch.input_ids[i] = next_token_id
|
||||
batch.position_ids[i] = input_length
|
||||
batch.input_lengths[i] = new_input_length
|
||||
batch.offsets[i] = offset
|
||||
batch.token_offsets[i] = token_offset
|
||||
batch.all_input_ids[i] = all_input_ids
|
||||
batch.all_input_ids_tensor[i] = all_input_ids_tensor
|
||||
batch.max_seqlen = max(batch.max_seqlen, new_input_length)
|
||||
batch.past_key_values[i] = past
|
||||
# Cumulative sum
|
||||
batch.cu_seqlens[(i + 1)] = batch.cu_seqlens[i] + new_input_length
|
||||
|
||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||
# from the values of the next batch
|
||||
if len(next_batch_keep_indices) != len(batch):
|
||||
# Apply indices to requests, token_choosers and stopping_criterias that need to be cached
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Create final next batch tensors
|
||||
next_batch_position_ids = torch.tensor(
|
||||
next_batch_position_ids, dtype=torch.int32
|
||||
)
|
||||
next_batch_cu_seqlens = torch.tensor(next_batch_cu_seqlens, dtype=torch.int32)
|
||||
if len(next_batch_keep_indices) > 1:
|
||||
next_batch_input_ids = torch.concat(next_batch_input_ids).squeeze(1)
|
||||
next_batch_past_key_values = torch.concat(next_batch_past_key_values, dim=1)
|
||||
else:
|
||||
next_batch_input_ids = next_batch_input_ids[0].view(1)
|
||||
next_batch_past_key_values = next_batch_past_key_values[0]
|
||||
|
||||
next_batch = FlashCausalLMBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
input_ids=next_batch_input_ids,
|
||||
position_ids=next_batch_position_ids,
|
||||
cu_seqlens=next_batch_cu_seqlens,
|
||||
max_seqlen=next_batch_max_seqlen,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
offsets=next_batch_offsets,
|
||||
token_offsets=next_batch_token_offsets,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
all_input_ids_tensor=next_batch_all_input_ids_tensor,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
)
|
||||
return generations, next_batch
|
||||
# No need to return a batch if we know that all requests stopped
|
||||
return generations, batch if not stopped else None
|
||||
|
|
|
@ -96,11 +96,13 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
stopping_criterias = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
padding_right_offset = 0
|
||||
for r in pb.requests:
|
||||
for i, r in enumerate(pb.requests):
|
||||
requests_idx_mapping[r.id] = i
|
||||
# Add escape_custom_split_sequence to the CausalLMBatch logic
|
||||
inputs.append(escape_custom_split_sequence(r.inputs))
|
||||
offsets.append(None)
|
||||
|
@ -115,7 +117,6 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
padding_right_offset, stopping_criteria.max_new_tokens
|
||||
)
|
||||
|
||||
# Tokenize batch
|
||||
tokenized_inputs = tokenizer(
|
||||
inputs,
|
||||
return_tensors="pt",
|
||||
|
@ -138,23 +139,23 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
|
||||
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
||||
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
|
||||
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=None,
|
||||
all_input_ids=all_input_ids,
|
||||
input_lengths=input_lengths,
|
||||
all_input_ids=list(all_input_ids),
|
||||
input_lengths=input_lengths.tolist(),
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=pb.size,
|
||||
max_input_length=max_input_length,
|
||||
max_input_length=max_input_length.item(),
|
||||
padding_right_offset=padding_right_offset,
|
||||
)
|
||||
|
||||
|
|
|
@ -3,7 +3,7 @@ import torch
|
|||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase
|
||||
from typing import Optional, Tuple, List, Type
|
||||
from typing import Optional, Tuple, List, Type, Dict
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.types import (
|
||||
|
@ -22,6 +22,7 @@ tracer = trace.get_tracer(__name__)
|
|||
class Seq2SeqLMBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
requests_idx_mapping: Dict[int, int]
|
||||
|
||||
# Encoder values
|
||||
input_ids: torch.Tensor
|
||||
|
@ -32,6 +33,9 @@ class Seq2SeqLMBatch(Batch):
|
|||
decoder_attention_mask: Optional[torch.Tensor]
|
||||
encoder_last_hidden_state: Optional[torch.Tensor]
|
||||
|
||||
# All tokens
|
||||
all_decoder_input_ids: List[torch.Tensor]
|
||||
|
||||
# Seq2SeqLM keeps track of both encoder and decoder attention keys and values
|
||||
past_key_values: Optional[List[Tuple]]
|
||||
|
||||
|
@ -46,7 +50,6 @@ class Seq2SeqLMBatch(Batch):
|
|||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
# Metadata used for padding
|
||||
size: int
|
||||
max_input_length: int
|
||||
max_decoder_input_length: int
|
||||
padding_right_offset: int
|
||||
|
@ -54,9 +57,7 @@ class Seq2SeqLMBatch(Batch):
|
|||
def to_pb(self) -> generate_pb2.Batch:
|
||||
"""Convert a Seq2SeqLMBatch to a text_generation_server.v1.Batch protobuf"""
|
||||
return generate_pb2.Batch(
|
||||
id=self.batch_id,
|
||||
requests=self.requests,
|
||||
size=self.size,
|
||||
id=self.batch_id, requests=self.requests, size=len(self)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
@ -71,18 +72,17 @@ class Seq2SeqLMBatch(Batch):
|
|||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
decoder_input_ids = []
|
||||
decoder_input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
padding_right_offset = 0
|
||||
for r in pb.requests:
|
||||
for i, r in enumerate(pb.requests):
|
||||
inputs.append(r.inputs)
|
||||
# Decoder sequence only contains the bos_token
|
||||
decoder_input_ids.append(tokenizer.bos_token_id)
|
||||
requests_idx_mapping[r.id] = i
|
||||
decoder_input_lengths.append(1)
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
|
@ -109,15 +109,22 @@ class Seq2SeqLMBatch(Batch):
|
|||
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
||||
max_input_length = input_lengths.max()
|
||||
|
||||
# Convert decoder_input_ids to torch tensor of size [batch_size, 1]
|
||||
decoder_input_ids = torch.tensor(decoder_input_ids, device=device).unsqueeze(-1)
|
||||
# Decoder sequence only contains the bos_token
|
||||
decoder_input_ids = (
|
||||
torch.tensor(tokenizer.bos_token_id, device=device)
|
||||
.repeat(len(pb.requests))
|
||||
.view(-1, 1)
|
||||
)
|
||||
all_decoder_input_ids = decoder_input_ids.view(-1).split(1)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=tokenized_inputs["input_ids"],
|
||||
attention_mask=tokenized_inputs["attention_mask"],
|
||||
decoder_input_ids=decoder_input_ids,
|
||||
all_decoder_input_ids=list(all_decoder_input_ids),
|
||||
decoder_attention_mask=None,
|
||||
encoder_last_hidden_state=None,
|
||||
past_key_values=None,
|
||||
|
@ -127,12 +134,96 @@ class Seq2SeqLMBatch(Batch):
|
|||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=len(pb.requests),
|
||||
max_input_length=max_input_length.item(),
|
||||
max_decoder_input_length=1,
|
||||
padding_right_offset=padding_right_offset,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("filter")
|
||||
def filter(
|
||||
self, requests: List[generate_pb2.Request]
|
||||
) -> Optional["Seq2SeqLMBatch"]:
|
||||
if len(requests) == 0:
|
||||
raise ValueError("Batch must have at least one request")
|
||||
if len(requests) == len(self):
|
||||
return self
|
||||
|
||||
keep_indices = []
|
||||
|
||||
# New values after filtering
|
||||
requests_idx_mapping = {}
|
||||
input_lengths = []
|
||||
decoder_input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
|
||||
all_decoder_input_ids = []
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
max_input_length = 0
|
||||
max_decoder_input_length = 0
|
||||
|
||||
for i, r in enumerate(requests):
|
||||
idx = self.requests_idx_mapping[r.id]
|
||||
requests_idx_mapping[r.id] = i
|
||||
keep_indices.append(idx)
|
||||
|
||||
offsets.append(self.offsets[idx])
|
||||
token_offsets.append(self.token_offsets[idx])
|
||||
|
||||
all_decoder_input_ids.append(self.all_decoder_input_ids[idx])
|
||||
|
||||
request_input_length = self.input_lengths[idx]
|
||||
input_lengths.append(request_input_length)
|
||||
max_input_length = max(max_input_length, request_input_length)
|
||||
|
||||
request_decoder_input_length = self.decoder_input_lengths[idx]
|
||||
decoder_input_lengths.append(request_decoder_input_length)
|
||||
max_decoder_input_length = max(
|
||||
max_decoder_input_length, request_decoder_input_length
|
||||
)
|
||||
|
||||
next_token_choosers.append(self.next_token_choosers[idx])
|
||||
stopping_criterias.append(self.stopping_criterias[idx])
|
||||
|
||||
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
|
||||
decoder_input_ids = self.decoder_input_ids[keep_indices]
|
||||
attention_mask = self.attention_mask[keep_indices]
|
||||
if self.decoder_attention_mask is not None:
|
||||
decoder_attention_mask = self.decoder_attention_mask[keep_indices]
|
||||
else:
|
||||
decoder_attention_mask = None
|
||||
|
||||
encoder_last_hidden_state = self.encoder_last_hidden_state[keep_indices]
|
||||
|
||||
past_key_values = [
|
||||
[t[keep_indices] for t in layer] for layer in self.past_key_values
|
||||
]
|
||||
|
||||
return Seq2SeqLMBatch(
|
||||
batch_id=self.batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=None,
|
||||
attention_mask=attention_mask,
|
||||
decoder_input_ids=decoder_input_ids,
|
||||
all_decoder_input_ids=all_decoder_input_ids,
|
||||
decoder_attention_mask=decoder_attention_mask,
|
||||
encoder_last_hidden_state=encoder_last_hidden_state,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
decoder_input_lengths=decoder_input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
max_input_length=max_input_length,
|
||||
max_decoder_input_length=max_decoder_input_length,
|
||||
padding_right_offset=self.padding_right_offset,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
|
||||
|
@ -144,7 +235,7 @@ class Seq2SeqLMBatch(Batch):
|
|||
max_decoder_input_length = 0
|
||||
padding_right_offset = 0
|
||||
for batch in batches:
|
||||
total_batch_size += batch.size
|
||||
total_batch_size += len(batch)
|
||||
max_input_length = max(max_input_length, batch.max_input_length)
|
||||
max_decoder_input_length = max(
|
||||
max_decoder_input_length, batch.max_decoder_input_length
|
||||
|
@ -153,6 +244,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
|
||||
# Batch attributes
|
||||
requests = []
|
||||
requests_idx_mapping = {}
|
||||
all_decoder_input_ids = []
|
||||
input_lengths = []
|
||||
decoder_input_lengths = []
|
||||
offsets = []
|
||||
|
@ -174,6 +267,7 @@ class Seq2SeqLMBatch(Batch):
|
|||
for i, batch in enumerate(batches):
|
||||
# Extend all list attributes
|
||||
requests.extend(batch.requests)
|
||||
all_decoder_input_ids.extend(batch.all_decoder_input_ids)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
decoder_input_lengths.extend(batch.decoder_input_lengths)
|
||||
offsets.extend(batch.offsets)
|
||||
|
@ -181,8 +275,15 @@ class Seq2SeqLMBatch(Batch):
|
|||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
if i == 0:
|
||||
requests_idx_mapping = batch.requests_idx_mapping
|
||||
else:
|
||||
# We need to offset the mapping for each batch by the cumulative batch size
|
||||
for k, v in batch.requests_idx_mapping.items():
|
||||
requests_idx_mapping[k] = v + start_index
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + batch.size
|
||||
end_index = start_index + len(batch)
|
||||
|
||||
# We only concatenate batches that did at least one step
|
||||
if batch.encoder_last_hidden_state is None:
|
||||
|
@ -201,12 +302,10 @@ class Seq2SeqLMBatch(Batch):
|
|||
# Create padded tensor
|
||||
if decoder_input_ids is None:
|
||||
decoder_input_ids = batch.decoder_input_ids.new_zeros(
|
||||
(total_batch_size, max_decoder_input_length),
|
||||
(total_batch_size, 1),
|
||||
)
|
||||
# Copy to correct indices
|
||||
decoder_input_ids[
|
||||
start_index:end_index, -batch.max_decoder_input_length :
|
||||
] = batch.decoder_input_ids[:, -batch.max_decoder_input_length :]
|
||||
decoder_input_ids[start_index:end_index] = batch.decoder_input_ids
|
||||
|
||||
# Create padded tensor
|
||||
if decoder_attention_mask is None:
|
||||
|
@ -302,14 +401,16 @@ class Seq2SeqLMBatch(Batch):
|
|||
start_index:end_index, :, -batch.max_input_length :, :
|
||||
] = t[:, :, -batch.max_input_length :, :]
|
||||
|
||||
start_index += batch.size
|
||||
start_index += len(batch)
|
||||
|
||||
return cls(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=None,
|
||||
attention_mask=attention_mask,
|
||||
decoder_input_ids=decoder_input_ids,
|
||||
all_decoder_input_ids=all_decoder_input_ids,
|
||||
decoder_attention_mask=decoder_attention_mask,
|
||||
encoder_last_hidden_state=encoder_last_hidden_state,
|
||||
past_key_values=past_key_values,
|
||||
|
@ -319,7 +420,6 @@ class Seq2SeqLMBatch(Batch):
|
|||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
max_input_length=max_input_length,
|
||||
max_decoder_input_length=max_decoder_input_length,
|
||||
padding_right_offset=padding_right_offset,
|
||||
|
@ -413,46 +513,25 @@ class Seq2SeqLM(Model):
|
|||
else:
|
||||
decoder_attention_mask = None
|
||||
|
||||
# check if first forward or not
|
||||
if batch.past_key_values is not None:
|
||||
# Only take the last token
|
||||
decoder_input_ids = batch.decoder_input_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
decoder_input_ids = batch.decoder_input_ids
|
||||
|
||||
# Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
|
||||
# internally...
|
||||
if batch.encoder_last_hidden_state is not None:
|
||||
encoder_last_hidden_state = [batch.encoder_last_hidden_state]
|
||||
else:
|
||||
encoder_last_hidden_state = batch.encoder_last_hidden_state
|
||||
encoder_last_hidden_state = None
|
||||
|
||||
logits, encoder_last_hidden_state, past = self.forward(
|
||||
batch.input_ids,
|
||||
batch.attention_mask,
|
||||
decoder_input_ids,
|
||||
batch.decoder_input_ids,
|
||||
decoder_attention_mask,
|
||||
encoder_last_hidden_state,
|
||||
batch.past_key_values,
|
||||
)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New values for next forward
|
||||
next_batch_input_lengths = []
|
||||
next_batch_offsets = []
|
||||
next_batch_token_offsets = []
|
||||
next_batch_decoder_input_ids = []
|
||||
next_batch_decoder_input_lengths = []
|
||||
|
||||
# Metadata
|
||||
next_batch_size = 0
|
||||
next_batch_max_input_length = 0
|
||||
next_batch_max_decoder_input_length = 0
|
||||
|
||||
# Finished requests
|
||||
generations: List[Generation] = []
|
||||
stopped = True
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
|
@ -464,7 +543,7 @@ class Seq2SeqLM(Model):
|
|||
logits,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.decoder_input_ids,
|
||||
batch.all_decoder_input_ids,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
|
@ -477,22 +556,24 @@ class Seq2SeqLM(Model):
|
|||
logits,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
decoder_input_ids,
|
||||
all_decoder_input_ids,
|
||||
) in enumerate(iterator):
|
||||
# Select next token
|
||||
next_token_id, logprobs = next_token_chooser(
|
||||
decoder_input_ids.view(1, -1), logits
|
||||
all_decoder_input_ids.view(1, -1), logits
|
||||
)
|
||||
|
||||
# Append next token to decoder tokens
|
||||
decoder_input_ids = torch.cat([decoder_input_ids, next_token_id.squeeze(1)])
|
||||
all_decoder_input_ids = torch.cat(
|
||||
[all_decoder_input_ids, next_token_id.squeeze(1)]
|
||||
)
|
||||
new_decoder_input_length = decoder_input_length + 1
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_text, offset, token_offset = self.decode_token(
|
||||
decoder_input_ids, offset, token_offset
|
||||
all_decoder_input_ids, offset, token_offset
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
|
@ -501,7 +582,7 @@ class Seq2SeqLM(Model):
|
|||
if stop:
|
||||
# Slice with decoder_input_length to remove padding
|
||||
# Decode all tokens
|
||||
output_text = self.decode(decoder_input_ids[-decoder_input_length:])
|
||||
output_text = self.decode(all_decoder_input_ids[-decoder_input_length:])
|
||||
|
||||
# Get seed
|
||||
if isinstance(next_token_chooser.choice, Sampling):
|
||||
|
@ -515,19 +596,7 @@ class Seq2SeqLM(Model):
|
|||
else:
|
||||
# Keep request in the batch
|
||||
generated_text = None
|
||||
next_batch_keep_indices.append(i)
|
||||
next_batch_decoder_input_ids.append(decoder_input_ids.unsqueeze(0))
|
||||
next_batch_size += 1
|
||||
next_batch_input_lengths.append(input_length)
|
||||
next_batch_decoder_input_lengths.append(new_decoder_input_length)
|
||||
next_batch_offsets.append(offset)
|
||||
next_batch_token_offsets.append(token_offset)
|
||||
next_batch_max_input_length = max(
|
||||
next_batch_max_input_length, input_length
|
||||
)
|
||||
next_batch_max_decoder_input_length = max(
|
||||
next_batch_max_decoder_input_length, new_decoder_input_length
|
||||
)
|
||||
stopped = False
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1:
|
||||
|
@ -551,69 +620,29 @@ class Seq2SeqLM(Model):
|
|||
|
||||
generations.append(generation)
|
||||
|
||||
# Update values
|
||||
batch.decoder_input_ids[i] = next_token_id
|
||||
batch.all_decoder_input_ids[i] = all_decoder_input_ids
|
||||
batch.input_lengths[i] = input_length
|
||||
batch.decoder_input_lengths[i] = new_decoder_input_length
|
||||
batch.offsets[i] = offset
|
||||
batch.token_offsets[i] = token_offset
|
||||
batch.max_input_length = max(batch.max_input_length, input_length)
|
||||
batch.max_decoder_input_length = max(
|
||||
batch.max_decoder_input_length, new_decoder_input_length
|
||||
)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
if stopped:
|
||||
return generations, None
|
||||
|
||||
next_batch_decoder_input_ids = torch.cat(next_batch_decoder_input_ids)
|
||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||
# from the values of the next batch
|
||||
if len(next_batch_keep_indices) != len(batch):
|
||||
# Apply indices to decoder_attention mask, past key values and other items that need to be cached
|
||||
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
|
||||
if batch.decoder_attention_mask is not None:
|
||||
next_batch_decoder_attention_mask = batch.decoder_attention_mask[
|
||||
next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_decoder_attention_mask = None
|
||||
|
||||
next_batch_encoder_last_hidden_state = encoder_last_hidden_state[
|
||||
next_batch_keep_indices
|
||||
]
|
||||
|
||||
next_batch_past_key_values = [
|
||||
[t[next_batch_keep_indices] for t in layer] for layer in past
|
||||
]
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_attention_mask = batch.attention_mask
|
||||
next_batch_decoder_attention_mask = batch.decoder_attention_mask
|
||||
next_batch_encoder_last_hidden_state = encoder_last_hidden_state
|
||||
next_batch_past_key_values = past
|
||||
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# We don't need input_ids after the prefill forward
|
||||
batch.input_ids = None
|
||||
batch.encoder_last_hidden_state = encoder_last_hidden_state
|
||||
batch.past_key_values = past
|
||||
# Update decoder_attention_mask as we added a new token to input_ids
|
||||
if next_batch_decoder_attention_mask is not None:
|
||||
next_batch_decoder_attention_mask[:, -batch.padding_right_offset] = 1
|
||||
if batch.decoder_attention_mask is not None:
|
||||
batch.decoder_attention_mask[:, -batch.padding_right_offset] = 1
|
||||
batch.padding_right_offset -= 1
|
||||
|
||||
next_batch = Seq2SeqLMBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
input_ids=None,
|
||||
attention_mask=next_batch_attention_mask,
|
||||
decoder_input_ids=next_batch_decoder_input_ids,
|
||||
decoder_attention_mask=next_batch_decoder_attention_mask,
|
||||
encoder_last_hidden_state=next_batch_encoder_last_hidden_state,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
decoder_input_lengths=next_batch_decoder_input_lengths,
|
||||
offsets=next_batch_offsets,
|
||||
token_offsets=next_batch_token_offsets,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
max_input_length=next_batch_max_input_length,
|
||||
max_decoder_input_length=next_batch_max_decoder_input_length,
|
||||
padding_right_offset=batch.padding_right_offset - 1,
|
||||
)
|
||||
return generations, next_batch
|
||||
return generations, batch
|
||||
|
|
|
@ -25,6 +25,10 @@ class Batch(ABC):
|
|||
) -> "Batch":
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def filter(self, requests: List[generate_pb2.Request]) -> "Batch":
|
||||
raise NotImplementedError
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def concatenate(cls, batches: List["Batch"]) -> "Batch":
|
||||
|
|
|
@ -60,8 +60,13 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
batch = self.cache.pop(batch_pb.id)
|
||||
if batch is None:
|
||||
raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
|
||||
batch = batch.filter(batch_pb.requests)
|
||||
if batch is not None:
|
||||
batches.append(batch)
|
||||
|
||||
if len(batches) == 0:
|
||||
raise ValueError("All batches are empty")
|
||||
|
||||
if len(batches) > 1:
|
||||
batch = self.model.batch_type.concatenate(batches)
|
||||
else:
|
||||
|
|
Loading…
Reference in New Issue