fix(models): Revert buggy support for AutoModel
This commit is contained in:
parent
b3b7ea0d74
commit
755fc0e403
|
@ -15,13 +15,11 @@ A Rust and gRPC server for text generation inference.
|
|||
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
||||
- 45ms per token generation for BLOOM with 8xA100 80GB
|
||||
|
||||
## Officially supported models
|
||||
## Supported models
|
||||
|
||||
- BLOOM
|
||||
- BLOOM-560m
|
||||
|
||||
Other models are supported on a best-effort basis using `AutoModelForCausalLM.from_pretrained(<model>, torch_dtype=torch.float16, device_map="auto")`.
|
||||
|
||||
## Load Tests for BLOOM
|
||||
|
||||
See `k6/load_test.js`
|
||||
|
@ -82,6 +80,7 @@ make router-dev
|
|||
|
||||
## TODO:
|
||||
|
||||
- [ ] Support AutoModelForSeq2SeqLM
|
||||
- [ ] Add tests for the `server/model` logic
|
||||
- [ ] Backport custom CUDA kernels to Transformers
|
||||
- [ ] Install safetensors with pip
|
|
@ -9,11 +9,11 @@ gen-server:
|
|||
install-transformers:
|
||||
# Install specific version of transformers
|
||||
rm transformers || true
|
||||
rm transformers-46d37bece7d3ffdef97b1ee4a3170c0a0627d921 || true
|
||||
curl -L -O https://github.com/huggingface/transformers/archive/46d37bece7d3ffdef97b1ee4a3170c0a0627d921.zip
|
||||
unzip 46d37bece7d3ffdef97b1ee4a3170c0a0627d921.zip
|
||||
rm 46d37bece7d3ffdef97b1ee4a3170c0a0627d921.zip
|
||||
mv transformers-46d37bece7d3ffdef97b1ee4a3170c0a0627d921 transformers
|
||||
rm transformers-7302a24535e8dc5637ea5b4e4572fc971d404098 || true
|
||||
curl -L -O https://github.com/OlivierDehaene/transformers/archive/7302a24535e8dc5637ea5b4e4572fc971d404098.zip
|
||||
unzip 7302a24535e8dc5637ea5b4e4572fc971d404098.zip
|
||||
rm 7302a24535e8dc5637ea5b4e4572fc971d404098.zip
|
||||
mv transformers-7302a24535e8dc5637ea5b4e4572fc971d404098 transformers
|
||||
cd transformers && python setup.py install
|
||||
|
||||
install-safetensors:
|
||||
|
|
|
@ -1,22 +1,16 @@
|
|||
from text_generation.models.model import Model
|
||||
from text_generation.models.bloom import BLOOMSharded
|
||||
from text_generation.models.bloom import BLOOM, BLOOMSharded
|
||||
|
||||
__all__ = ["Model", "BLOOMSharded"]
|
||||
__all__ = ["Model", "BLOOM", "BLOOMSharded"]
|
||||
|
||||
|
||||
def get_model(model_name: str, sharded: bool, quantize: bool) -> Model:
|
||||
|
||||
if model_name.startswith("bigscience/bloom"):
|
||||
if sharded:
|
||||
return BLOOMSharded(model_name, quantize)
|
||||
else:
|
||||
if quantize:
|
||||
raise ValueError("quantization is not supported for non-sharded BLOOM")
|
||||
return Model(model_name)
|
||||
return BLOOM(model_name)
|
||||
else:
|
||||
if sharded:
|
||||
raise ValueError("sharded is only supported for BLOOM models")
|
||||
if quantize:
|
||||
raise ValueError("Quantization is only supported for BLOOM models")
|
||||
|
||||
return Model(model_name)
|
||||
raise ValueError(f"model {model_name} is not supported yet")
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import List, Optional
|
||||
from typing import List, Optional, Tuple, Type
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from safetensors import safe_open
|
||||
|
@ -11,8 +11,10 @@ from transformers.models.bloom.parallel_layers import (
|
|||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
from text_generation.models import Model
|
||||
from text_generation.models.types import Batch, GeneratedText
|
||||
from text_generation.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
|
@ -29,9 +31,306 @@ except Exception as e:
|
|||
torch.manual_seed(0)
|
||||
|
||||
|
||||
class BLOOMSharded(Model):
|
||||
class BloomBatch(Batch):
|
||||
@classmethod
|
||||
def concatenate(cls, batches: List["Batch"]) -> "BloomBatch":
|
||||
# Used for padding
|
||||
total_batch_size = sum(batch.size for batch in batches)
|
||||
max_sequence_length = max(batch.max_sequence_length for batch in batches)
|
||||
|
||||
# Batch attributes
|
||||
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
|
||||
requests = []
|
||||
all_input_lengths = []
|
||||
all_input_ids = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Used for slicing correctly inside the tensors
|
||||
# Equivalent to a cumsum on batch sizes
|
||||
start_index = 0
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
all_input_lengths.extend(batch.all_input_lengths)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + batch.size
|
||||
|
||||
# We only concatenate batches that did at least one step
|
||||
if batch.input_ids["input_ids"].shape[1] > 1:
|
||||
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
|
||||
|
||||
# Initialize tensors
|
||||
if i == 0:
|
||||
input_ids["input_ids"] = torch.empty(
|
||||
(total_batch_size, 1),
|
||||
dtype=batch.input_ids["input_ids"].dtype,
|
||||
device=batch.input_ids["input_ids"].device,
|
||||
)
|
||||
input_ids["attention_mask"] = torch.zeros(
|
||||
(total_batch_size, max_sequence_length),
|
||||
dtype=batch.input_ids["attention_mask"].dtype,
|
||||
device=batch.input_ids["attention_mask"].device,
|
||||
)
|
||||
|
||||
# input_ids["input_ids"] is always of shape [batch_size, 1]
|
||||
# We do not need to pad it
|
||||
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
|
||||
|
||||
# We need to slice the attention mask to remove padding from previous steps
|
||||
input_ids["attention_mask"][
|
||||
start_index:end_index, -batch.max_sequence_length:
|
||||
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length:]
|
||||
|
||||
for j, past in enumerate(batch.input_ids["past_key_values"]):
|
||||
past_keys = past[0]
|
||||
past_values = past[1]
|
||||
|
||||
_, head_dim, padded_sequence_length = past_keys.shape
|
||||
|
||||
# Reshape the tensors to make slicing easier
|
||||
past_keys = past_keys.view(
|
||||
batch.size, -1, head_dim, padded_sequence_length
|
||||
)
|
||||
past_values = past_values.view(
|
||||
batch.size, -1, padded_sequence_length, head_dim
|
||||
)
|
||||
num_heads = past_keys.shape[1]
|
||||
|
||||
# Initialize tensors
|
||||
# This will run only once per layer
|
||||
if j == len(input_ids["past_key_values"]):
|
||||
padded_past_keys = torch.zeros(
|
||||
(
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
head_dim,
|
||||
max_sequence_length - 1,
|
||||
),
|
||||
dtype=past_keys.dtype,
|
||||
device=past_keys.device,
|
||||
)
|
||||
padded_past_values = torch.zeros(
|
||||
(
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
max_sequence_length - 1,
|
||||
head_dim,
|
||||
),
|
||||
dtype=past_values.dtype,
|
||||
device=past_values.device,
|
||||
)
|
||||
input_ids["past_key_values"].append(
|
||||
[padded_past_keys, padded_past_values]
|
||||
)
|
||||
|
||||
# We slice the past keys and values to remove the padding from previous batches
|
||||
input_ids["past_key_values"][j][0][
|
||||
start_index:end_index, :, :, -(batch.max_sequence_length - 1):
|
||||
] = past_keys[:, :, :, -(batch.max_sequence_length - 1):]
|
||||
|
||||
input_ids["past_key_values"][j][1][
|
||||
start_index:end_index, :, -(batch.max_sequence_length - 1):, :
|
||||
] = past_values[:, :, -(batch.max_sequence_length - 1):, :]
|
||||
|
||||
# If we are on the last batch, we need to reshape the tensors
|
||||
if (i + 1) == len(batches):
|
||||
input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
|
||||
j
|
||||
][0].view(total_batch_size * num_heads, head_dim, -1)
|
||||
input_ids["past_key_values"][j][1] = input_ids["past_key_values"][
|
||||
j
|
||||
][1].view(total_batch_size * num_heads, -1, head_dim)
|
||||
|
||||
start_index += batch.size
|
||||
|
||||
return cls(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
all_input_lengths=all_input_lengths,
|
||||
input_ids=input_ids,
|
||||
all_input_ids=all_input_ids,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
|
||||
|
||||
class BLOOM(Model):
|
||||
def __init__(self, model_name: str):
|
||||
if not model_name.startswith("bigscience/bloom"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
self.device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
self.device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() else None
|
||||
).eval()
|
||||
|
||||
self.num_heads = self.model.config.num_attention_heads
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[BloomBatch]:
|
||||
return BloomBatch
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, past_key_values: Optional = None
|
||||
) -> CausalLMOutputWithPast:
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
def generate_token(
|
||||
self, batch: BloomBatch
|
||||
) -> Tuple[List[GeneratedText], Optional[BloomBatch]]:
|
||||
# For some reason, inference_mode does not work well with GLOO which we use on CPU
|
||||
context_manager = (
|
||||
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
|
||||
)
|
||||
with context_manager():
|
||||
outputs = self.forward(**batch.input_ids)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
next_batch_past_keep_indices = []
|
||||
|
||||
# New input_ids for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_all_input_ids = []
|
||||
next_all_input_lengths = []
|
||||
|
||||
next_batch_size = 0
|
||||
next_batch_max_sequence_length = 0
|
||||
|
||||
# Finished requests
|
||||
generated_texts: List[GeneratedText] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.all_input_lengths,
|
||||
outputs.logits,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
logits,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_tokens,
|
||||
) in enumerate(iterator):
|
||||
# Select next token
|
||||
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
|
||||
|
||||
# Append next token to all tokens
|
||||
all_tokens = torch.cat([all_tokens, next_token])
|
||||
|
||||
# Evaluate stopping criteria
|
||||
if stopping_criteria(all_tokens):
|
||||
# Decode all tokens
|
||||
output = self.tokenizer.decode(
|
||||
all_tokens.squeeze(-1), skip_special_tokens=True
|
||||
)
|
||||
# Add to the list of finished generations with the original request
|
||||
generated_texts.append(GeneratedText(request, output))
|
||||
# add to the next batch
|
||||
else:
|
||||
next_batch_keep_indices.append(i)
|
||||
# past_key_values is of shape [batch_size * num_heads, ...]
|
||||
# so we need to take into account the `num_heads` stride here
|
||||
next_batch_past_keep_indices.extend(
|
||||
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
|
||||
)
|
||||
next_batch_input_ids.append(next_token)
|
||||
next_batch_all_input_ids.append(all_tokens)
|
||||
next_batch_size += 1
|
||||
new_input_length = input_length + 1
|
||||
next_all_input_lengths.append(new_input_length)
|
||||
next_batch_max_sequence_length = max(
|
||||
next_batch_max_sequence_length, new_input_length
|
||||
)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generated_texts, None
|
||||
|
||||
# If we finished at least one generation
|
||||
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
|
||||
if generated_texts:
|
||||
# Apply indices to attention mask, past key values and other items that need to be cached
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
|
||||
next_batch_keep_indices
|
||||
]
|
||||
next_batch_input_ids["past_key_values"] = [
|
||||
(
|
||||
keys[next_batch_past_keep_indices],
|
||||
values[next_batch_past_keep_indices],
|
||||
)
|
||||
for keys, values in outputs["past_key_values"]
|
||||
]
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
|
||||
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Update attention_mask with padding as we added a new token to input_ids
|
||||
next_batch_input_ids["attention_mask"] = torch.cat(
|
||||
[
|
||||
next_batch_input_ids["attention_mask"],
|
||||
torch.ones((next_batch_size, 1)).to(self.device),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
next_batch = BloomBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
all_input_lengths=next_all_input_lengths,
|
||||
input_ids=next_batch_input_ids,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
max_sequence_length=next_batch_max_sequence_length,
|
||||
)
|
||||
return generated_texts, next_batch
|
||||
|
||||
|
||||
class BLOOMSharded(BLOOM):
|
||||
def __init__(self, model_name: str, quantize: bool = False):
|
||||
super(Model, self).__init__()
|
||||
if not model_name.startswith("bigscience/bloom"):
|
||||
raise ValueError(f"Model {model_name} is not supported")
|
||||
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
|
@ -80,17 +379,17 @@ class BLOOMSharded(Model):
|
|||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
full_name = f"transformer.{name}"
|
||||
|
@ -153,9 +452,9 @@ class BLOOMSharded(Model):
|
|||
)
|
||||
|
||||
if (
|
||||
type(module)
|
||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||||
and param_name == "weight"
|
||||
type(module)
|
||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||||
and param_name == "weight"
|
||||
):
|
||||
tensor = Int8Params(
|
||||
tensor.transpose(1, 0),
|
||||
|
|
|
@ -1,166 +1,19 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import List, Tuple, Optional
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import List, Tuple, Optional, TypeVar, Type
|
||||
|
||||
from text_generation.models.types import Batch, GeneratedText
|
||||
|
||||
B = TypeVar("B", bound=Batch)
|
||||
|
||||
class Model:
|
||||
def __init__(self, model_name: str):
|
||||
if torch.cuda.is_available():
|
||||
self.device = torch.device("cuda")
|
||||
dtype = torch.float16
|
||||
else:
|
||||
self.device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name, torch_dtype=dtype, device_map="auto" if torch.cuda.is_available() else None
|
||||
).eval()
|
||||
|
||||
self.num_heads = self.model.config.num_attention_heads
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, past_key_values: Optional = None
|
||||
) -> CausalLMOutputWithPast:
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
class Model(ABC):
|
||||
@property
|
||||
@abstractmethod
|
||||
def batch_type(self) -> Type[B]:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def generate_token(
|
||||
self, batch: Batch
|
||||
) -> Tuple[List[GeneratedText], Optional[Batch]]:
|
||||
# For some reason, inference_mode does not work well with GLOO which we use on CPU
|
||||
context_manager = (
|
||||
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
|
||||
)
|
||||
with context_manager():
|
||||
outputs = self.forward(**batch.input_ids)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
next_batch_past_keep_indices = []
|
||||
|
||||
# New input_ids for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_all_input_ids = []
|
||||
next_all_input_lengths = []
|
||||
|
||||
next_batch_size = 0
|
||||
next_batch_max_sequence_length = 0
|
||||
|
||||
# Finished requests
|
||||
generated_texts: List[GeneratedText] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.all_input_lengths,
|
||||
outputs.logits,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
logits,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_tokens,
|
||||
) in enumerate(iterator):
|
||||
# Select next token
|
||||
next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])
|
||||
|
||||
# Append next token to all tokens
|
||||
all_tokens = torch.cat([all_tokens, next_token])
|
||||
|
||||
# Evaluate stopping criteria
|
||||
if stopping_criteria(all_tokens):
|
||||
# Decode all tokens
|
||||
output = self.tokenizer.decode(
|
||||
all_tokens.squeeze(-1), skip_special_tokens=True
|
||||
)
|
||||
# Add to the list of finished generations with the original request
|
||||
generated_texts.append(GeneratedText(request, output))
|
||||
# add to the next batch
|
||||
else:
|
||||
next_batch_keep_indices.append(i)
|
||||
# past_key_values is of shape [batch_size * num_heads, ...]
|
||||
# so we need to take into account the `num_heads` stride here
|
||||
next_batch_past_keep_indices.extend(
|
||||
[j for j in range(i * self.num_heads, (i + 1) * self.num_heads)]
|
||||
)
|
||||
next_batch_input_ids.append(next_token)
|
||||
next_batch_all_input_ids.append(all_tokens)
|
||||
next_batch_size += 1
|
||||
new_input_length = input_length + 1
|
||||
next_all_input_lengths.append(new_input_length)
|
||||
next_batch_max_sequence_length = max(
|
||||
next_batch_max_sequence_length, new_input_length
|
||||
)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generated_texts, None
|
||||
|
||||
# If we finished at least one generation
|
||||
next_batch_input_ids = {"input_ids": torch.cat(next_batch_input_ids, dim=0)}
|
||||
if generated_texts:
|
||||
# Apply indices to attention mask, past key values and other items that need to be cached
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"][
|
||||
next_batch_keep_indices
|
||||
]
|
||||
next_batch_input_ids["past_key_values"] = [
|
||||
(
|
||||
keys[next_batch_past_keep_indices],
|
||||
values[next_batch_past_keep_indices],
|
||||
)
|
||||
for keys, values in outputs["past_key_values"]
|
||||
]
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_input_ids["attention_mask"] = batch.input_ids["attention_mask"]
|
||||
next_batch_input_ids["past_key_values"] = outputs["past_key_values"]
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Update attention_mask with padding as we added a new token to input_ids
|
||||
next_batch_input_ids["attention_mask"] = torch.cat(
|
||||
[
|
||||
next_batch_input_ids["attention_mask"],
|
||||
torch.ones((next_batch_size, 1)).to(self.device),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
next_batch = Batch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
all_input_lengths=next_all_input_lengths,
|
||||
input_ids=next_batch_input_ids,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
max_sequence_length=next_batch_max_sequence_length,
|
||||
)
|
||||
return generated_texts, next_batch
|
||||
self, batch: B
|
||||
) -> Tuple[List[GeneratedText], Optional[B]]:
|
||||
raise NotImplementedError
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import torch
|
||||
|
||||
from abc import abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Dict
|
||||
|
||||
|
@ -70,131 +71,9 @@ class Batch:
|
|||
)
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def concatenate(cls, batches: List["Batch"]) -> "Batch":
|
||||
# Used for padding
|
||||
total_batch_size = sum(batch.size for batch in batches)
|
||||
max_sequence_length = max(batch.max_sequence_length for batch in batches)
|
||||
|
||||
# Batch attributes
|
||||
input_ids = {"input_ids": None, "attention_mask": None, "past_key_values": []}
|
||||
requests = []
|
||||
all_input_lengths = []
|
||||
all_input_ids = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Used for slicing correctly inside the tensors
|
||||
# Equivalent to a cumsum on batch sizes
|
||||
start_index = 0
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
all_input_lengths.extend(batch.all_input_lengths)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + batch.size
|
||||
|
||||
# We only concatenate batches that did at least one step
|
||||
if batch.input_ids["input_ids"].shape[1] > 1:
|
||||
raise ValueError("Batch input_ids should be of shape (batch_size, 1)")
|
||||
|
||||
# Initialize tensors
|
||||
if i == 0:
|
||||
input_ids["input_ids"] = torch.empty(
|
||||
(total_batch_size, 1),
|
||||
dtype=batch.input_ids["input_ids"].dtype,
|
||||
device=batch.input_ids["input_ids"].device,
|
||||
)
|
||||
input_ids["attention_mask"] = torch.zeros(
|
||||
(total_batch_size, max_sequence_length),
|
||||
dtype=batch.input_ids["attention_mask"].dtype,
|
||||
device=batch.input_ids["attention_mask"].device,
|
||||
)
|
||||
|
||||
# input_ids["input_ids"] is always of shape [batch_size, 1]
|
||||
# We do not need to pad it
|
||||
input_ids["input_ids"][start_index:end_index] = batch.input_ids["input_ids"]
|
||||
|
||||
# We need to slice the attention mask to remove padding from previous steps
|
||||
input_ids["attention_mask"][
|
||||
start_index:end_index, -batch.max_sequence_length :
|
||||
] = batch.input_ids["attention_mask"][:, -batch.max_sequence_length :]
|
||||
|
||||
for j, past in enumerate(batch.input_ids["past_key_values"]):
|
||||
past_keys = past[0]
|
||||
past_values = past[1]
|
||||
|
||||
_, head_dim, padded_sequence_length = past_keys.shape
|
||||
|
||||
# Reshape the tensors to make slicing easier
|
||||
past_keys = past_keys.view(
|
||||
batch.size, -1, head_dim, padded_sequence_length
|
||||
)
|
||||
past_values = past_values.view(
|
||||
batch.size, -1, padded_sequence_length, head_dim
|
||||
)
|
||||
num_heads = past_keys.shape[1]
|
||||
|
||||
# Initialize tensors
|
||||
# This will run only once per layer
|
||||
if j == len(input_ids["past_key_values"]):
|
||||
padded_past_keys = torch.zeros(
|
||||
(
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
head_dim,
|
||||
max_sequence_length - 1,
|
||||
),
|
||||
dtype=past_keys.dtype,
|
||||
device=past_keys.device,
|
||||
)
|
||||
padded_past_values = torch.zeros(
|
||||
(
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
max_sequence_length - 1,
|
||||
head_dim,
|
||||
),
|
||||
dtype=past_values.dtype,
|
||||
device=past_values.device,
|
||||
)
|
||||
input_ids["past_key_values"].append(
|
||||
[padded_past_keys, padded_past_values]
|
||||
)
|
||||
|
||||
# We slice the past keys and values to remove the padding from previous batches
|
||||
input_ids["past_key_values"][j][0][
|
||||
start_index:end_index, :, :, -(batch.max_sequence_length - 1) :
|
||||
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
|
||||
|
||||
input_ids["past_key_values"][j][1][
|
||||
start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
|
||||
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
|
||||
|
||||
# If we are on the last batch, we need to reshape the tensors
|
||||
if (i + 1) == len(batches):
|
||||
input_ids["past_key_values"][j][0] = input_ids["past_key_values"][
|
||||
j
|
||||
][0].view(total_batch_size * num_heads, head_dim, -1)
|
||||
input_ids["past_key_values"][j][1] = input_ids["past_key_values"][
|
||||
j
|
||||
][1].view(total_batch_size * num_heads, -1, head_dim)
|
||||
|
||||
start_index += batch.size
|
||||
|
||||
return cls(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
all_input_lengths=all_input_lengths,
|
||||
input_ids=input_ids,
|
||||
all_input_ids=all_input_ids,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@dataclass
|
||||
|
|
|
@ -27,7 +27,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
return generate_pb2.ClearCacheResponse()
|
||||
|
||||
async def Generate(self, request, context):
|
||||
batch = Batch.from_pb(request.batch, self.model.tokenizer, self.model.device)
|
||||
batch = self.model.batch_type.from_pb(request.batch, self.model.tokenizer, self.model.device)
|
||||
|
||||
generated_texts, next_batch = self.model.generate_token(batch)
|
||||
self.cache.set(next_batch)
|
||||
|
@ -51,7 +51,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
batches.append(batch)
|
||||
|
||||
if len(batches) > 1:
|
||||
batch = Batch.concatenate(batches)
|
||||
batch = self.model.batch_type.concatenate(batches)
|
||||
else:
|
||||
batch = batches[0]
|
||||
|
||||
|
|
Loading…
Reference in New Issue