feat: add SchedulerV3 (#1996)

- Refactor code to allow supporting multiple versions of the
generate.proto at the same time
- Add v3/generate.proto (ISO to generate.proto for now but allow for
future changes without impacting v2 backends)
- Add Schedule trait to abstract queuing and batching mechanisms that
will be different in the future
- Add SchedulerV2/V3 impl
This commit is contained in:
OlivierDehaene 2024-06-04 15:56:56 +02:00 committed by GitHub
parent fec0167a12
commit 757223b352
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
32 changed files with 3798 additions and 912 deletions

42
Cargo.lock generated
View File

@ -4,9 +4,9 @@ version = 3
[[package]]
name = "addr2line"
version = "0.21.0"
version = "0.22.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a30b2e23b9e17a9f90641c7ab1549cd9b44f296d3ccbf309d2863cfe398a0cb"
checksum = "6e4503c46a5c0c7844e948c9a4d6acd9f50cccb4de1c48eb9e291ea17470c678"
dependencies = [
"gimli",
]
@ -350,9 +350,9 @@ dependencies = [
[[package]]
name = "backtrace"
version = "0.3.71"
version = "0.3.72"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "26b05800d2e817c8b3b4b54abd461726265fa9789ae34330622f2db9ee696f9d"
checksum = "17c6a35df3749d2e8bb1b7b21a976d82b15548788d2735b9d82f329268f71a11"
dependencies = [
"addr2line",
"cc",
@ -1138,9 +1138,9 @@ dependencies = [
[[package]]
name = "gimli"
version = "0.28.1"
version = "0.29.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4271d37baee1b8c7e4b708028c57d816cf9d2434acb33a549475f78c181f6253"
checksum = "40ecd4077b5ae9fd2e9e169b102c6c330d0605168eb0e8bf79952b256dbefffd"
[[package]]
name = "glob"
@ -1396,9 +1396,9 @@ dependencies = [
[[package]]
name = "hyper-util"
version = "0.1.4"
version = "0.1.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d8d52be92d09acc2e01dddb7fde3ad983fc6489c7db4837e605bc3fca4cb63e"
checksum = "7b875924a60b96e5d7b9ae7b066540b1dd1cbd90d1828f54c92e02a283351c56"
dependencies = [
"bytes",
"futures-util",
@ -1938,11 +1938,10 @@ dependencies = [
[[package]]
name = "native-tls"
version = "0.2.11"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "07226173c32f2926027b63cce4bcd8076c3552846cbe7925f3aaffeac0a3b92e"
checksum = "a8614eb2c83d59d1c8cc974dd3f920198647674a0a035e1af1fa58707e317466"
dependencies = [
"lazy_static",
"libc",
"log",
"openssl",
@ -2168,9 +2167,9 @@ checksum = "830b246a0e5f20af87141b25c173cd1b609bd7779a4617d6ec582abaf90870f3"
[[package]]
name = "object"
version = "0.32.2"
version = "0.35.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a6a622008b6e321afc04970976f62ee297fdbaa6f95318ca343e3eebb9648441"
checksum = "b8ec7ab813848ba4522158d5517a6093db1ded27575b070f4177b8d12b41db5e"
dependencies = [
"memchr",
]
@ -2563,9 +2562,9 @@ dependencies = [
[[package]]
name = "proc-macro2"
version = "1.0.84"
version = "1.0.85"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec96c6a92621310b51366f1e28d05ef11489516e93be030060e5fc12024a49d6"
checksum = "22244ce15aa966053a896d1accb3a6e68469b97c7f33f284b99f0d576879fc23"
dependencies = [
"unicode-ident",
]
@ -3554,6 +3553,7 @@ dependencies = [
name = "text-generation-client"
version = "2.0.5-dev0"
dependencies = [
"async-trait",
"base64 0.22.1",
"futures",
"grpc-metadata",
@ -3752,9 +3752,9 @@ dependencies = [
[[package]]
name = "tokio"
version = "1.37.0"
version = "1.38.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1adbebffeca75fcfd058afa480fb6c0b81e165a0323f9c9d39c9697e37c46787"
checksum = "ba4f4a02a7a80d6f274636f0aa95c7e383b912d41fe721a31f29e29698585a4a"
dependencies = [
"backtrace",
"bytes",
@ -3781,9 +3781,9 @@ dependencies = [
[[package]]
name = "tokio-macros"
version = "2.2.0"
version = "2.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b8a1e28f2deaa14e508979454cb3a223b10b938b45af148bc0986de36f1923b"
checksum = "5f5ae998a069d4b5aba8ee9dad856af7d520c3699e6159b185c2acd48155d39a"
dependencies = [
"proc-macro2",
"quote",
@ -4733,9 +4733,9 @@ checksum = "bec47e5bfd1bff0eeaf6d8b485cc1074891a197ab4225d504cb7a1ab88b02bf0"
[[package]]
name = "winnow"
version = "0.6.8"
version = "0.6.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c3c52e9c97a68071b23e836c9380edae937f17b9c4667bd021973efc689f618d"
checksum = "86c949fede1d13936a99f14fafd3e76fd642b556dd2ce96287fbe2e0151bfac6"
dependencies = [
"memchr",
]

View File

@ -1,8 +1,9 @@
use std::time::{Duration, Instant};
use text_generation_client::{
Batch, CachedBatch, Chunk, ClientError, Input, NextTokenChooserParameters, Request,
ShardedClient, StoppingCriteriaParameters,
use text_generation_client::v3::{
Batch, CachedBatch, NextTokenChooserParameters, Request, ShardedClient,
StoppingCriteriaParameters,
};
use text_generation_client::{Chunk, ClientError, Input};
use tokenizers::{Tokenizer, TruncationDirection};
use tokio::sync::{broadcast, mpsc};

View File

@ -8,7 +8,7 @@ use crate::app::App;
use crate::event::Event;
use crossterm::ExecutableCommand;
use std::io;
use text_generation_client::{GrammarType, NextTokenChooserParameters, ShardedClient};
use text_generation_client::v3::{GrammarType, NextTokenChooserParameters, ShardedClient};
use tokenizers::Tokenizer;
use tokio::sync::{broadcast, mpsc};
use tui::backend::CrosstermBackend;

View File

@ -4,7 +4,7 @@
/// and: https://github.com/orhun/rust-tui-template
use clap::Parser;
use std::path::Path;
use text_generation_client::ShardedClient;
use text_generation_client::v3::ShardedClient;
use tokenizers::{FromPretrainedParameters, Tokenizer};
use tracing_subscriber::layer::SubscriberExt;
use tracing_subscriber::util::SubscriberInitExt;

View File

@ -51,27 +51,6 @@ message ClearCacheRequest {
/// Empty response
message ClearCacheResponse {}
message Image {
/// Binary image data.
bytes data = 1;
/// Image MIME type.
string mimetype = 2;
}
message InputChunk {
oneof chunk {
/// Plain text data
string text = 1;
/// Image data
Image image = 2;
}
}
message Input {
repeated InputChunk chunks = 1;
}
enum GrammarType {
GRAMMAR_TYPE_NONE = 0;
GRAMMAR_TYPE_JSON = 1;
@ -116,9 +95,7 @@ message StoppingCriteriaParameters {
message Request {
/// Request ID
uint64 id = 1;
/// The generation context as chunks
Input input_chunks = 8;
/// The generation context, stringified input_chunks
/// The generation context
string inputs = 2;
/// Context truncation
uint32 truncate = 3;

259
proto/v3/generate.proto Normal file
View File

@ -0,0 +1,259 @@
syntax = "proto3";
package generate.v3;
service TextGenerationService {
/// Model Info
rpc Info (InfoRequest) returns (InfoResponse) {}
/// Service discovery
rpc ServiceDiscovery (ServiceDiscoveryRequest) returns (ServiceDiscoveryResponse) {}
/// Empties batch cache
rpc ClearCache (ClearCacheRequest) returns (ClearCacheResponse);
/// Remove requests from a cached batch
rpc FilterBatch (FilterBatchRequest) returns (FilterBatchResponse);
/// Warmup the model and compute max cache size
rpc Warmup (WarmupRequest) returns (WarmupResponse);
/// Prefill batch and decode first token
rpc Prefill (PrefillRequest) returns (PrefillResponse);
/// Decode token for a list of prefilled batches
rpc Decode (DecodeRequest) returns (DecodeResponse);
/// Health check
rpc Health (HealthRequest) returns (HealthResponse);
}
message HealthRequest {}
message HealthResponse {}
/// Empty request
message InfoRequest {}
message InfoResponse {
bool requires_padding = 1;
string dtype = 2;
string device_type = 3;
optional uint32 window_size = 4;
uint32 speculate = 5;
}
/// Empty request
message ServiceDiscoveryRequest {}
message ServiceDiscoveryResponse {
/// Other shards urls
repeated string urls = 1;
}
message ClearCacheRequest {
/// Optional batch id
optional uint64 id = 1;
}
/// Empty response
message ClearCacheResponse {}
message Image {
/// Binary image data.
bytes data = 1;
/// Image MIME type.
string mimetype = 2;
}
message InputChunk {
oneof chunk {
/// Plain text data
string text = 1;
/// Image data
Image image = 2;
}
}
message Input {
repeated InputChunk chunks = 1;
}
enum GrammarType {
GRAMMAR_TYPE_NONE = 0;
GRAMMAR_TYPE_JSON = 1;
GRAMMAR_TYPE_REGEX = 2;
}
message NextTokenChooserParameters {
/// exponential scaling output probability distribution
float temperature = 1;
/// restricting to the k highest probability elements
uint32 top_k = 2;
/// restricting to top tokens summing to prob_cut_off <= prob_cut_off
float top_p = 3;
/// restricting to top tokens summing to prob_cut_off <= prob_cut_off
float typical_p = 4;
/// apply sampling on the logits
bool do_sample = 5;
/// random seed for sampling
uint64 seed = 6;
/// repetition penalty
float repetition_penalty = 7;
/// frequency penalty
float frequency_penalty = 9;
/// token watermarking using "A Watermark for Large Language Models"
bool watermark = 8;
/// grammar (applied if not empty)
string grammar = 10;
/// grammar type
GrammarType grammar_type = 11;
}
message StoppingCriteriaParameters {
/// Maximum number of generated tokens
uint32 max_new_tokens = 1;
/// Optional stopping sequences
repeated string stop_sequences = 2;
/// Ignore end of sequence token
/// used for benchmarking
bool ignore_eos_token = 3;
}
message Request {
/// Request ID
uint64 id = 1;
/// The generation context as chunks
Input input_chunks = 8;
/// The generation context, stringified input_chunks
string inputs = 2;
/// Context truncation
uint32 truncate = 3;
/// Next Token Chooser Parameters
NextTokenChooserParameters parameters = 4;
/// Stopping Criteria Parameters
StoppingCriteriaParameters stopping_parameters = 5;
/// Return prefill logprobs
bool prefill_logprobs = 6;
/// Return most likely n tokens
uint32 top_n_tokens = 7;
}
message Batch {
/// Batch ID
uint64 id = 1;
/// Individual requests
repeated Request requests = 2;
/// Batch size (==len(requests))
uint32 size = 3;
/// Maximum number of tokens this batch will grow to
uint32 max_tokens = 4;
}
message CachedBatch {
/// Batch ID
uint64 id = 1;
/// Individual requests ids
repeated uint64 request_ids = 2;
/// Batch size (==len(requests))
uint32 size = 3;
/// Maximum number of tokens this batch will grow to
uint32 max_tokens = 4;
}
enum FinishReason {
FINISH_REASON_LENGTH = 0;
FINISH_REASON_EOS_TOKEN = 1;
FINISH_REASON_STOP_SEQUENCE = 2;
}
message GeneratedText {
/// Output
string text = 1;
/// Number of generated tokens
uint32 generated_tokens = 2;
/// Finish reason
FinishReason finish_reason = 3;
/// Seed
optional uint64 seed = 4;
}
message Tokens {
/// Token IDs
repeated uint32 ids = 1;
/// Logprobs
repeated float logprobs = 2;
/// tokens
repeated string texts = 3;
/// special
repeated bool is_special = 4;
}
message Generation {
/// Request ID
uint64 request_id = 1;
/// Prefill tokens (optional)
Tokens prefill_tokens = 2;
Tokens tokens = 3;
/// Complete generated text
optional GeneratedText generated_text = 4;
/// Top tokens
repeated Tokens top_tokens = 5;
}
message FilterBatchRequest {
/// Batch ID
uint64 batch_id = 1;
/// Requests to keep
repeated uint64 request_ids = 2;
}
message FilterBatchResponse {
/// Filtered Batch (cached)
CachedBatch batch = 1;
}
message PrefillRequest {
/// Batch
Batch batch = 1;
}
message PrefillResponse {
/// Generation
repeated Generation generations = 1;
/// Next batch (cached)
optional CachedBatch batch = 2;
/// Forward elapsed time in nanoseconds
uint64 forward_ns = 3;
/// Decode elapsed time in nanoseconds
uint64 decode_ns = 4;
/// Total elapsed time in nanoseconds
uint64 total_ns = 5;
}
message DecodeRequest {
/// Cached batches
repeated CachedBatch batches = 1;
}
message DecodeResponse {
/// Decodes
repeated Generation generations = 1;
/// Next batch (cached)
optional CachedBatch batch = 2;
/// Forward elapsed time in nanoseconds
uint64 forward_ns = 3;
/// Decode elapsed time in nanoseconds
uint64 decode_ns = 4;
/// Total elapsed time in nanoseconds
uint64 total_ns = 5;
/// Concatenate elapsed time in nanoseconds
optional uint64 concat_ns = 6;
}
message WarmupRequest {
/// Batch to warmup on
Batch batch = 1;
uint32 max_input_length = 2;
uint32 max_prefill_tokens = 3;
uint32 max_total_tokens = 4;
}
message WarmupResponse {
/// Maximum number of tokens supported by the model
optional uint32 max_supported_total_tokens = 1;
}

View File

@ -6,6 +6,7 @@ authors.workspace = true
homepage.workspace = true
[dependencies]
async-trait = "^0.1"
base64 = { workspace = true }
futures = "^0.3"
grpc-metadata = { path = "../grpc-metadata" }

View File

@ -1,19 +1,31 @@
use std::fs;
fn main() -> Result<(), Box<dyn std::error::Error>> {
println!("cargo:rerun-if-changed=../../proto/generate.proto");
fs::create_dir("src/pb").unwrap_or(());
println!("cargo:rerun-if-changed=../../proto/**");
fs::create_dir_all("src/v2/pb").unwrap_or(());
let mut config = prost_build::Config::new();
config.protoc_arg("--experimental_allow_proto3_optional");
tonic_build::configure()
.build_client(true)
.build_server(false)
.out_dir("src/pb")
.out_dir("src/v2/pb")
.include_file("mod.rs")
.compile_with_config(config, &["../../proto/generate.proto"], &["../../proto"])
.unwrap_or_else(|e| panic!("protobuf compilation failed: {e}"));
fs::create_dir_all("src/v3/pb").unwrap_or(());
let mut config = prost_build::Config::new();
config.protoc_arg("--experimental_allow_proto3_optional");
tonic_build::configure()
.build_client(true)
.build_server(false)
.out_dir("src/v3/pb")
.include_file("mod.rs")
.compile_with_config(config, &["../../proto/v3/generate.proto"], &["../../proto"])
.unwrap_or_else(|e| panic!("protobuf compilation failed: {e}"));
Ok(())
}

View File

@ -1,25 +1,35 @@
//! Text Generation gRPC client library
mod client;
#[allow(clippy::derive_partial_eq_without_eq)]
mod pb;
mod sharded_client;
pub mod v2;
pub mod v3;
use async_trait::async_trait;
use base64::{engine::general_purpose::STANDARD, Engine};
pub use client::Client;
pub use pb::generate::v2::input_chunk::Chunk;
pub use pb::generate::v2::HealthResponse;
pub use pb::generate::v2::Image;
pub use pb::generate::v2::InfoResponse as ShardInfo;
pub use pb::generate::v2::{
Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType, Input, InputChunk,
NextTokenChooserParameters, Request, StoppingCriteriaParameters, Tokens,
};
pub use sharded_client::ShardedClient;
use thiserror::Error;
use tonic::transport;
use tonic::Status;
pub use v3::{Chunk, Image, Input, InputChunk};
#[async_trait]
pub trait Health {
/// Check if a generate server is healthy by asking it to allocate a tensor on device
async fn device_health(&self) -> Result<()>;
/// Check if a generate server is healthy by doing a forward pass.
/// EXPENSIVE
async fn model_health(&self) -> Result<()>;
}
#[derive(Debug)]
pub struct ShardInfo {
pub requires_padding: bool,
pub dtype: String,
pub device_type: String,
pub window_size: Option<u32>,
pub speculate: u32,
}
#[derive(Error, Debug, Clone)]
pub enum ClientError {
#[error("Could not connect to Text Generation server: {0}")]
@ -46,8 +56,6 @@ impl From<transport::Error> for ClientError {
}
}
pub type Result<T> = std::result::Result<T, ClientError>;
// Small convenience re-wrapping of `Chunk`.
impl From<Chunk> for InputChunk {
fn from(chunk: Chunk) -> Self {
@ -77,3 +85,7 @@ impl ChunksToString for Vec<InputChunk> {
output
}
}
static WARMUP_IMAGE_BASE64 :&str = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII=";
pub type Result<T> = std::result::Result<T, ClientError>;

View File

@ -1 +0,0 @@
*.rs

View File

@ -0,0 +1,258 @@
/// Single shard Client
use crate::v2::pb;
use crate::{ClientError, Result};
use crate::WARMUP_IMAGE_BASE64;
use grpc_metadata::InjectTelemetryContext;
use pb::generate::v2::text_generation_service_client::TextGenerationServiceClient;
use pb::generate::v2::*;
use std::cmp::min;
use std::time::Duration;
use tonic::transport::{Channel, Uri};
use tracing::instrument;
/// Text Generation Inference gRPC client
#[derive(Debug, Clone)]
pub struct Client {
stub: TextGenerationServiceClient<Channel>,
}
impl Client {
/// Returns a client connected to the given url
pub async fn connect(uri: Uri) -> Result<Self> {
let channel = Channel::builder(uri).connect().await?;
Ok(Self {
stub: TextGenerationServiceClient::new(channel),
})
}
/// Returns a client connected to the given unix socket
pub async fn connect_uds(path: String) -> Result<Self> {
let channel = Channel::from_shared("http://[::]:50051".to_string())
.unwrap()
.connect_with_connector(tower::service_fn(move |_: Uri| {
tokio::net::UnixStream::connect(path.clone())
}))
.await?;
Ok(Self {
stub: TextGenerationServiceClient::new(channel),
})
}
/// Returns a list of uris or unix sockets of all shards
#[instrument(skip(self))]
pub async fn service_discovery(&mut self) -> Result<Vec<String>> {
let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context();
let response = self.stub.service_discovery(request).await.map_err(|_| {
ClientError::Connection("Server does not support v2 interface".to_string())
})?;
let urls = response
.into_inner()
.urls
.into_iter()
// Remove unix socket prefix
.map(|url| match url.strip_prefix("unix://") {
None => url,
Some(stripped_url) => stripped_url.to_string(),
})
.collect();
Ok(urls)
}
/// Get model info
#[instrument(skip(self))]
pub async fn info(&mut self) -> Result<InfoResponse> {
let request = tonic::Request::new(InfoRequest {}).inject_context();
let response = self.stub.info(request).await?.into_inner();
Ok(response)
}
/// Get model health
#[instrument(skip(self))]
pub async fn health(&mut self) -> Result<HealthResponse> {
let request = tonic::Request::new(HealthRequest {}).inject_context();
let response = self.stub.health(request).await?.into_inner();
Ok(response)
}
/// Clear the past generations cache
#[instrument(skip(self))]
pub async fn clear_cache(&mut self, batch_id: Option<u64>) -> Result<()> {
let request = tonic::Request::new(ClearCacheRequest { id: batch_id }).inject_context();
self.stub.clear_cache(request).await?;
Ok(())
}
/// Filter a cached batch
#[instrument(skip(self))]
pub async fn filter_batch(
&mut self,
batch_id: u64,
request_ids: Vec<u64>,
) -> Result<Option<CachedBatch>> {
let request = tonic::Request::new(FilterBatchRequest {
batch_id,
request_ids,
})
.inject_context();
let filtered_batch = self.stub.filter_batch(request).await?.into_inner();
Ok(filtered_batch.batch)
}
/// Warmup on a max size batch
///
/// Returns the maximum amount of tokens supported by the hardware
#[instrument(skip_all)]
pub async fn warmup(
&mut self,
max_input_length: u32,
max_prefill_tokens: u32,
max_total_tokens: u32,
max_batch_size: Option<usize>,
) -> Result<Option<u32>> {
let mut n_tokens = 0;
let mut requests = Vec::new();
// Create requests
while n_tokens < max_prefill_tokens {
let truncate = min(max_input_length, max_prefill_tokens - n_tokens);
let mut inputs = String::new();
inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize));
if n_tokens == 0 {
// 1 request is enough to test vision heads.
// Sending images on other queries messes up easily with truncation.
inputs.push_str(&format!(
"![](data:image/jpeg;base64,{WARMUP_IMAGE_BASE64})",
));
}
requests.push(Request {
id: 0,
inputs,
// We truncate the input on the server side to be sure that it has the correct size
truncate,
// Set sampling parameters to also take these ops into account in the max memory
parameters: Some(NextTokenChooserParameters {
temperature: 0.9,
top_k: 10,
top_p: 0.9,
typical_p: 0.9,
do_sample: false,
seed: 0,
repetition_penalty: 1.2,
frequency_penalty: 0.1,
watermark: true,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: max_total_tokens - truncate,
stop_sequences: vec![],
ignore_eos_token: true,
}),
prefill_logprobs: true,
top_n_tokens: 20,
});
n_tokens += max_input_length;
// Check max_batch_size
if Some(requests.len()) == max_batch_size {
break;
}
}
let batch = Batch {
id: 0,
size: requests.len() as u32,
requests,
max_tokens: 0,
};
let request = tonic::Request::new(WarmupRequest {
batch: Some(batch),
max_input_length,
max_prefill_tokens,
max_total_tokens,
})
.inject_context();
let response = self.stub.warmup(request).await?.into_inner();
Ok(response.max_supported_total_tokens)
}
/// Generate one token for each request in the given batch
///
/// Returns Generation for each request in batch
/// and the next cached batch
#[instrument(skip_all, fields(id = &batch.id, size = &batch.size))]
pub async fn prefill(
&mut self,
batch: Batch,
) -> Result<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)> {
let request = tonic::Request::new(PrefillRequest { batch: Some(batch) }).inject_context();
let response = self.stub.prefill(request).await?.into_inner();
Ok((
response.generations,
response.batch,
PrefillTimings::new(response.forward_ns, response.decode_ns, response.total_ns),
))
}
/// Generate one token for each request in the given cached batches
///
/// Returns Generation for each request in batches
/// and the next cached batch
#[instrument(skip_all, fields(size = batches.iter().map(|batch|{batch.size}).sum::<u32>()))]
pub async fn decode(
&mut self,
batches: Vec<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)> {
let request = tonic::Request::new(DecodeRequest { batches }).inject_context();
let response = self.stub.decode(request).await?.into_inner();
Ok((
response.generations,
response.batch,
DecodeTimings::new(
response.concat_ns,
response.forward_ns,
response.decode_ns,
response.total_ns,
),
))
}
}
pub struct PrefillTimings {
pub forward: Duration,
pub decode: Duration,
pub total: Duration,
}
impl PrefillTimings {
fn new(forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
Self {
forward: Duration::from_nanos(forward_ns),
decode: Duration::from_nanos(decode_ns),
total: Duration::from_nanos(total_ns),
}
}
}
pub struct DecodeTimings {
pub concat: Option<Duration>,
pub forward: Duration,
pub decode: Duration,
pub total: Duration,
}
impl DecodeTimings {
fn new(concat_ns: Option<u64>, forward_ns: u64, decode_ns: u64, total_ns: u64) -> Self {
Self {
concat: concat_ns.map(Duration::from_nanos),
forward: Duration::from_nanos(forward_ns),
decode: Duration::from_nanos(decode_ns),
total: Duration::from_nanos(total_ns),
}
}
}

View File

@ -0,0 +1,13 @@
#[allow(clippy::derive_partial_eq_without_eq)]
mod pb;
mod client;
mod sharded_client;
pub use client::Client;
pub use pb::generate::v2::HealthResponse;
pub use pb::generate::v2::{
Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType, InfoResponse,
NextTokenChooserParameters, Request, StoppingCriteriaParameters, Tokens,
};
pub use sharded_client::ShardedClient;

1
router/client/src/v2/pb/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*

View File

@ -1,10 +1,17 @@
use crate::client::{DecodeTimings, PrefillTimings};
/// Multi shard Client
use crate::{Batch, CachedBatch, Client, Generation, HealthResponse, ShardInfo};
use crate::{v2, Health, ShardInfo};
use crate::{ClientError, Result};
use crate::v2::InfoResponse;
use async_trait::async_trait;
use futures::future::join_all;
use tonic::transport::Uri;
use tracing::instrument;
use v2::client::{DecodeTimings, PrefillTimings};
use v2::{
Batch, CachedBatch, Client, Generation, GrammarType, HealthResponse,
NextTokenChooserParameters, Request, StoppingCriteriaParameters,
};
#[derive(Debug, Clone)]
/// Text Generation Inference gRPC multi client
@ -47,7 +54,7 @@ impl ShardedClient {
.iter_mut()
.map(|client| client.info())
.collect();
join_all(futures).await.pop().unwrap()
join_all(futures).await.pop().unwrap().map(ShardInfo::from)
}
/// GRPC health check
@ -185,3 +192,60 @@ impl ShardedClient {
Ok((generations, next_batch, timings))
}
}
impl From<InfoResponse> for ShardInfo {
fn from(value: InfoResponse) -> Self {
Self {
requires_padding: value.requires_padding,
dtype: value.dtype,
device_type: value.device_type,
window_size: value.window_size,
speculate: value.speculate,
}
}
}
#[async_trait]
impl Health for ShardedClient {
async fn device_health(&self) -> Result<()> {
self.clone().health().await?;
Ok(())
}
async fn model_health(&self) -> Result<()> {
// Dummy batch of 1 token and 1 generated token
let liveness_request = Request {
id: u64::MAX,
inputs: "liveness".to_string(),
truncate: 10,
prefill_logprobs: false,
parameters: Some(NextTokenChooserParameters {
temperature: 1.0,
top_k: 0,
top_p: 1.0,
typical_p: 1.0,
do_sample: false,
seed: 0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: 1,
stop_sequences: vec![],
ignore_eos_token: false,
}),
top_n_tokens: 0,
};
let batch = Batch {
id: u64::MAX,
requests: vec![liveness_request],
size: 1,
max_tokens: 2,
};
self.clone().prefill(batch).await?;
Ok(())
}
}

View File

@ -1,17 +1,16 @@
use crate::v3::{pb, Chunk};
use crate::{ClientError, Result, WARMUP_IMAGE_BASE64};
/// Single shard Client
use crate::pb::generate::v2::text_generation_service_client::TextGenerationServiceClient;
use crate::pb::generate::v2::*;
use crate::{Chunk, Result};
use base64::engine::general_purpose::STANDARD;
use base64::Engine;
use grpc_metadata::InjectTelemetryContext;
use pb::generate::v3::text_generation_service_client::TextGenerationServiceClient;
use pb::generate::v3::*;
use std::cmp::min;
use std::time::Duration;
use tonic::transport::{Channel, Uri};
use tracing::instrument;
static WARMUP_IMAGE_BASE64 :&str = "iVBORw0KGgoAAAANSUhEUgAAABQAAAAUCAIAAAAC64paAAABg2lDQ1BJQ0MgcHJvZmlsZQAAKJF9kT1Iw0AcxV/TSotUROxQxCFDdbKLijjWKhShQqgVWnUwufQLmrQkKS6OgmvBwY/FqoOLs64OroIg+AHi7OCk6CIl/i8ptIjx4Lgf7+497t4BQqvKNDOQADTdMjKppJjLr4rBVwQQwhAERGVm1uckKQ3P8XUPH1/v4jzL+9yfY0AtmAzwicQJVjcs4g3imU2rznmfOMLKskp8Tjxh0AWJH7muuPzGueSwwDMjRjYzTxwhFks9rPQwKxsa8TRxTNV0yhdyLquctzhr1Qbr3JO/MFzQV5a5TnMUKSxiCRJEKGiggiosxGnVSTGRof2kh3/E8UvkUshVASPHAmrQIDt+8D/43a1ZnJp0k8JJoO/Ftj/GgOAu0G7a9vexbbdPAP8zcKV3/bUWMPtJerOrxY6AwW3g4rqrKXvA5Q4QfarLhuxIfppCsQi8n9E35YHhW6B/ze2ts4/TByBLXaVvgINDYLxE2ese7w719vbvmU5/PycecohsjayNAAAACXBIWXMAAC4jAAAuIwF4pT92AAAAB3RJTUUH6AQIEQMnlTSSjwAAABl0RVh0Q29tbWVudABDcmVhdGVkIHdpdGggR0lNUFeBDhcAAAASSURBVDjLY2AYBaNgFIyCoQsABMQAAeRw1DoAAAAASUVORK5CYII=";
/// Text Generation Inference gRPC client
#[derive(Debug, Clone)]
pub struct Client {
@ -46,7 +45,9 @@ impl Client {
#[instrument(skip(self))]
pub async fn service_discovery(&mut self) -> Result<Vec<String>> {
let request = tonic::Request::new(ServiceDiscoveryRequest {}).inject_context();
let response = self.stub.service_discovery(request).await?;
let response = self.stub.service_discovery(request).await.map_err(|_| {
ClientError::Connection("Server does not support v3 interface".to_string())
})?;
let urls = response
.into_inner()
.urls
@ -133,6 +134,7 @@ impl Client {
// Send stringly-typed inputs for compatibility for backends that haven't
// been updated to support chunks.
let mut inputs = String::new();
inputs.push_str(&"_test ".to_string().repeat(max_input_length as usize));
if n_tokens == 0 {
@ -145,10 +147,10 @@ impl Client {
requests.push(Request {
id: 0,
inputs,
input_chunks: Some(Input {
chunks: input_chunks,
}),
inputs,
// We truncate the input on the server side to be sure that it has the correct size
truncate,
// Set sampling parameters to also take these ops into account in the max memory

View File

@ -0,0 +1,13 @@
#[allow(clippy::derive_partial_eq_without_eq)]
mod pb;
mod client;
mod sharded_client;
pub use client::Client;
pub use pb::generate::v3::{
input_chunk::Chunk, Batch, CachedBatch, FinishReason, GeneratedText, Generation, GrammarType,
HealthResponse, Image, InfoResponse, Input, InputChunk, NextTokenChooserParameters, Request,
StoppingCriteriaParameters, Tokens,
};
pub use sharded_client::ShardedClient;

1
router/client/src/v3/pb/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*

View File

@ -0,0 +1,254 @@
/// Multi shard Client
use crate::{v3, Health, ShardInfo};
use crate::{ClientError, Result};
use crate::v3::{Chunk, InfoResponse, Input};
use async_trait::async_trait;
use futures::future::join_all;
use tonic::transport::Uri;
use tracing::instrument;
use v3::client::{DecodeTimings, PrefillTimings};
use v3::{
Batch, CachedBatch, Client, Generation, GrammarType, HealthResponse,
NextTokenChooserParameters, Request, StoppingCriteriaParameters,
};
#[derive(Debug, Clone)]
/// Text Generation Inference gRPC multi client
pub struct ShardedClient {
clients: Vec<Client>,
}
impl ShardedClient {
fn new(clients: Vec<Client>) -> Self {
Self { clients }
}
/// Create a new ShardedClient from a master client. The master client will communicate with
/// the other shards and returns all uris/unix sockets with the `service_discovery` gRPC method.
async fn from_master_client(mut master_client: Client) -> Result<Self> {
// Get all uris/unix sockets from the master client
let uris = master_client.service_discovery().await?;
let futures = uris.into_iter().map(Client::connect_uds);
let clients: Result<Vec<Client>> = join_all(futures).await.into_iter().collect();
Ok(Self::new(clients?))
}
/// Returns a client connected to the given uri
pub async fn connect(uri: Uri) -> Result<Self> {
let master_client = Client::connect(uri).await?;
Self::from_master_client(master_client).await
}
/// Returns a client connected to the given unix socket
pub async fn connect_uds(path: String) -> Result<Self> {
let master_client = Client::connect_uds(path).await?;
Self::from_master_client(master_client).await
}
/// Get the model info
#[instrument(skip(self))]
pub async fn info(&mut self) -> Result<ShardInfo> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.info())
.collect();
join_all(futures).await.pop().unwrap().map(ShardInfo::from)
}
/// GRPC health check
#[instrument(skip(self))]
pub async fn health(&mut self) -> Result<HealthResponse> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.health())
.collect();
join_all(futures).await.pop().unwrap()
}
/// Clear the past generations cache
#[instrument(skip(self))]
pub async fn clear_cache(&mut self, batch_id: Option<u64>) -> Result<()> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| client.clear_cache(batch_id))
.collect();
join_all(futures).await.into_iter().collect()
}
/// Filter a cached batch
#[instrument(skip(self))]
pub async fn filter_batch(
&mut self,
batch_id: u64,
request_ids: Vec<u64>,
) -> Result<Option<CachedBatch>> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.filter_batch(batch_id, request_ids.clone())))
.collect();
// all shards return the same message
join_all(futures).await.pop().unwrap()
}
/// Warmup on a max size batch
///
/// Returns the maximum amount of tokens supported by the hardware
#[instrument(skip(self))]
pub async fn warmup(
&mut self,
max_input_length: u32,
max_prefill_tokens: u32,
max_total_tokens: u32,
max_batch_size: Option<usize>,
) -> Result<Option<u32>> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| {
Box::pin(client.warmup(
max_input_length,
max_prefill_tokens,
max_total_tokens,
max_batch_size,
))
})
.collect();
// Take the minimum value
let results = join_all(futures)
.await
.into_iter()
.collect::<Result<Vec<Option<u32>>>>()?;
Ok(results.into_iter().flatten().min())
}
/// Generate one token for each request in the given batch
///
/// Returns Generation for each request in batch
/// and the next cached batch
#[instrument(skip_all, fields(id = & batch.id, size = & batch.size))]
pub async fn prefill(
&mut self,
batch: Batch,
) -> Result<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.prefill(batch.clone())))
.collect();
#[allow(clippy::type_complexity)]
let results: Result<Vec<(Vec<Generation>, Option<CachedBatch>, PrefillTimings)>> =
join_all(futures).await.into_iter().collect();
let mut results = results?;
let (mut generations, next_batch, mut timings) =
results.pop().ok_or(ClientError::EmptyResults)?;
// Merge generations from different model shards
for (mut shard_generations, _, shard_timings) in results.into_iter() {
generations.append(&mut shard_generations);
// Return the timings of the slowest shard
if shard_timings.total > timings.total {
timings = shard_timings;
}
}
Ok((generations, next_batch, timings))
}
/// Generate one token for each request in the given cached batches
///
/// Returns Generation for each request in batches
/// and the next cached batch
#[instrument(skip_all, fields(size = batches.iter().map(| batch | {batch.size}).sum::< u32 > ()))]
pub async fn decode(
&mut self,
batches: Vec<CachedBatch>,
) -> Result<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)> {
let futures: Vec<_> = self
.clients
.iter_mut()
.map(|client| Box::pin(client.decode(batches.clone())))
.collect();
#[allow(clippy::type_complexity)]
let results: Result<Vec<(Vec<Generation>, Option<CachedBatch>, DecodeTimings)>> =
join_all(futures).await.into_iter().collect();
let mut results = results?;
let (mut generations, next_batch, mut timings) =
results.pop().ok_or(ClientError::EmptyResults)?;
// Merge generations from different model shards
for (mut shard_generations, _, shard_timings) in results.into_iter() {
generations.append(&mut shard_generations);
// Return the timings of the slowest shard
if shard_timings.total > timings.total {
timings = shard_timings;
}
}
Ok((generations, next_batch, timings))
}
}
impl From<InfoResponse> for ShardInfo {
fn from(value: InfoResponse) -> Self {
Self {
requires_padding: value.requires_padding,
dtype: value.dtype,
device_type: value.device_type,
window_size: value.window_size,
speculate: value.speculate,
}
}
}
#[async_trait]
impl Health for ShardedClient {
async fn device_health(&self) -> Result<()> {
self.clone().health().await?;
Ok(())
}
async fn model_health(&self) -> Result<()> {
// Dummy batch of 1 token and 1 generated token
let liveness_request = Request {
id: u64::MAX,
inputs: "liveness".to_string(),
input_chunks: Some(Input {
chunks: vec![Chunk::Text("liveness".into()).into()],
}),
truncate: 10,
prefill_logprobs: false,
parameters: Some(NextTokenChooserParameters {
temperature: 1.0,
top_k: 0,
top_p: 1.0,
typical_p: 1.0,
do_sample: false,
seed: 0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: GrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: 1,
stop_sequences: vec![],
ignore_eos_token: false,
}),
top_n_tokens: 0,
};
let batch = Batch {
id: u64::MAX,
requests: vec![liveness_request],
size: 1,
max_tokens: 2,
};
self.clone().prefill(batch).await?;
Ok(())
}
}

View File

@ -1,75 +0,0 @@
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use text_generation_client::{
Batch, Input, NextTokenChooserParameters, Request, ShardedClient, StoppingCriteriaParameters,
};
use text_generation_client::{Chunk, GrammarType as ProtoGrammarType};
// Note: Request ids and batch ids cannot collide.
const LIVENESS_ID: u64 = u64::MAX;
const BATCH_ID: u64 = u64::MAX;
#[derive(Clone, Debug)]
pub(crate) struct Health {
client: ShardedClient,
generation_health: Arc<AtomicBool>,
}
impl Health {
pub(crate) fn new(client: ShardedClient, generation_health: Arc<AtomicBool>) -> Self {
Self {
client,
generation_health,
}
}
pub(crate) async fn check(&mut self) -> bool {
if self.generation_health.load(Ordering::SeqCst) {
// Generation is healthy, we only check that the shards are answering gRPC calls
self.client.health().await.is_ok()
} else {
// Generation is unhealthy or have not sent any generation request yet
// Dummy batch of 1 token and 1 generated token
let liveness_request = Request {
id: LIVENESS_ID,
input_chunks: Some(Input {
chunks: vec![Chunk::Text("liveness".into()).into()],
}),
inputs: "liveness".to_string(),
truncate: 10,
prefill_logprobs: false,
parameters: Some(NextTokenChooserParameters {
temperature: 1.0,
top_k: 0,
top_p: 1.0,
typical_p: 1.0,
do_sample: false,
seed: 0,
repetition_penalty: 1.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: ProtoGrammarType::None as i32,
}),
stopping_parameters: Some(StoppingCriteriaParameters {
max_new_tokens: 1,
stop_sequences: vec![],
ignore_eos_token: false,
}),
top_n_tokens: 0,
};
let batch = Batch {
id: BATCH_ID,
requests: vec![liveness_request],
size: 1,
max_tokens: 2,
};
// Skips the queue
let value = self.client.prefill(batch).await.is_ok();
// Update generation health
self.generation_health.store(value, Ordering::SeqCst);
value
}
}
}

View File

@ -0,0 +1,34 @@
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use text_generation_client::Health;
#[derive(Clone)]
pub(crate) struct HealthCheck {
client: Arc<dyn Health + Send + Sync>,
generation_health: Arc<AtomicBool>,
}
impl HealthCheck {
pub(crate) fn new(
client: Arc<dyn Health + Send + Sync>,
generation_health: Arc<AtomicBool>,
) -> Self {
Self {
client,
generation_health,
}
}
pub(crate) async fn check(&mut self) -> bool {
let value = if self.generation_health.load(Ordering::SeqCst) {
// Generation is healthy, we only check that the shards can allocate on device
self.client.device_health().await
} else {
self.client.model_health().await
}
.is_ok();
// Update generation health
self.generation_health.store(value, Ordering::SeqCst);
value
}
}

522
router/src/infer/mod.rs Normal file
View File

@ -0,0 +1,522 @@
mod health;
pub(crate) mod v2;
pub(crate) mod v3;
pub(crate) use health::HealthCheck;
use crate::validation::{ValidGenerateRequest, Validation, ValidationError};
use crate::{
ChatTemplateInputs, ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig,
HubTokenizerConfig, Message, MessageChunk, PrefillToken, Text, TextMessage, Token,
};
use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools};
use futures::future::try_join_all;
use minijinja::{Environment, ErrorKind, Template};
use serde_json::{json, Map, Value};
use std::collections::HashMap;
use std::sync::Arc;
use thiserror::Error;
use tokio::sync::{OwnedSemaphorePermit, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
use tracing::instrument;
pub(crate) trait Scheduler {
fn schedule(
&self,
request: ValidGenerateRequest,
permit: OwnedSemaphorePermit,
) -> Result<GenerateStreamResponse, InferError>;
}
/// Inference struct
#[derive(Clone)]
pub struct Infer {
/// Validation
validation: Validation,
/// Request scheduler
scheduler: Arc<dyn Scheduler + Send + Sync>,
/// Chat template
chat_template: Option<ChatTemplate>,
/// Inference limit
limit_concurrent_requests: Arc<Semaphore>,
}
impl Infer {
#[allow(clippy::too_many_arguments)]
pub(crate) fn new(
scheduler: Arc<dyn Scheduler + Send + Sync>,
validation: Validation,
max_concurrent_requests: usize,
tokenizer_config: HubTokenizerConfig,
processor_config: HubProcessorConfig,
) -> Self {
let chat_template = tokenizer_config
.chat_template
.or(processor_config.chat_template)
.and_then(|t| match t {
ChatTemplateVersions::Single(template) => Some(template),
ChatTemplateVersions::Multiple(templates) => templates
.into_iter()
.find(|t| t.name == "default")
.map(|t| t.template),
})
.map(|t| {
// .strip() is not supported in minijinja
// .capitalize() is not supported in minijinja but we can use | capitalize
let t = t
.replace(".strip()", " | trim")
.replace(".capitalize()", " | capitalize");
ChatTemplate::new(t, tokenizer_config.bos_token, tokenizer_config.eos_token)
});
// Inference limit with a semaphore
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
Self {
validation,
scheduler,
chat_template,
limit_concurrent_requests: semaphore,
}
}
/// Add a new request to the queue and return a stream of InferStreamResponse
#[instrument(skip_all)]
pub(crate) async fn generate_stream(
&self,
request: GenerateRequest,
) -> Result<GenerateStreamResponse, InferError> {
// Limit concurrent requests by acquiring a permit from the semaphore
let permit = self
.clone()
.limit_concurrent_requests
.try_acquire_owned()
.map_err(|err| {
metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
tracing::error!("{err}");
err
})?;
// Validate request
let valid_request = self.validation.validate(request).await.map_err(|err| {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
err
})?;
self.scheduler.schedule(valid_request, permit)
}
/// Tokenizer the input
#[instrument(skip_all)]
pub(crate) async fn tokenize(
&self,
request: GenerateRequest,
) -> Result<Option<tokenizers::Encoding>, InferError> {
// Tokenize request
let inputs = request.inputs;
let truncate = request.parameters.truncate;
let encoding = self
.validation
.tokenize(inputs, truncate)
.await
.map_err(|err| {
tracing::error!("Tokenization {err}");
err
})?;
// Return Encoding
Ok(encoding.map(|(encoding, _)| encoding))
}
/// Apply the chat template to the chat request
#[instrument(skip_all)]
pub(crate) fn apply_chat_template(
&self,
messages: Vec<Message>,
grammar_with_prompt: Option<(GrammarType, String)>,
) -> Result<String, InferError> {
self.chat_template
.as_ref()
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
.apply(messages, grammar_with_prompt)
.map_err(|e| {
metrics::increment_counter!("tgi_request_failure", "err" => "template");
tracing::error!("{e}");
e
})
}
/// Add a new request to the queue and return a InferResponse
#[instrument(skip_all)]
pub(crate) async fn generate(
&self,
request: GenerateRequest,
) -> Result<InferResponse, InferError> {
let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);
// Create stream and keep semaphore permit as long as generate lives
let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
// Return values
let mut result_prefill = Vec::new();
let mut result_tokens = Vec::new();
let mut result_top_tokens = Vec::new();
let mut result_generated_text = None;
let mut result_start = None;
let mut result_queued = None;
// Iterate on stream
while let Some(response) = stream.next().await {
match response? {
// Add prefill tokens
InferStreamResponse::Prefill(prefill_tokens) => {
result_prefill = prefill_tokens;
}
// Push last token
InferStreamResponse::Intermediate { token, top_tokens } => {
result_tokens.push(token);
result_top_tokens.push(top_tokens);
}
// Final message
// Set return values
InferStreamResponse::End {
token,
generated_text,
start,
queued,
top_tokens,
} => {
result_tokens.push(token);
result_top_tokens.push(top_tokens);
result_generated_text = Some(generated_text);
result_start = Some(start);
result_queued = Some(queued)
}
}
}
// Check that we received a `InferStreamResponse::End` message
if let (Some(generated_text), Some(queued), Some(start)) =
(result_generated_text, result_queued, result_start)
{
Ok(InferResponse {
prefill: result_prefill,
_input_length,
tokens: result_tokens,
generated_text,
queued,
start,
top_tokens: if use_top_tokens {
result_top_tokens
} else {
Vec::new()
},
})
} else {
let err = InferError::IncompleteGeneration;
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
tracing::error!("{err}");
Err(err)
}
}
/// Add best_of new requests to the queue and return a InferResponse of the sequence with
/// the highest log probability per token
#[instrument(skip(self, request))]
pub(crate) async fn generate_best_of(
&self,
request: GenerateRequest,
best_of: usize,
) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
// validate best_of parameter separately
let best_of = self.validation.validate_best_of(best_of)?;
// create multiple generate requests
let mut infer_responses: Vec<InferResponse> =
try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;
// get the sequence with the highest log probability per token
let mut max_index = 0;
let mut max_logprob: f32 = f32::MIN;
for (i, response) in infer_responses.iter().enumerate() {
// mean logprobs of the generated tokens
let sequence_logprob = response
.tokens
.iter()
.map(|token| token.logprob)
.sum::<f32>()
/ response.tokens.len() as f32;
// set best sequence
if sequence_logprob > max_logprob {
max_index = i;
max_logprob = sequence_logprob;
}
}
let best_response = infer_responses.remove(max_index);
Ok((best_response, infer_responses))
}
}
/// Raise a exception (custom function) used in the chat templates
fn raise_exception(err_text: String) -> Result<String, minijinja::Error> {
Err(minijinja::Error::new(ErrorKind::SyntaxError, err_text))
}
#[derive(Clone)]
struct ChatTemplate {
template: Template<'static, 'static>,
bos_token: Option<String>,
eos_token: Option<String>,
use_default_tool_template: bool,
}
impl ChatTemplate {
fn new(template: String, bos_token: Option<String>, eos_token: Option<String>) -> Self {
let mut env = Box::new(Environment::new());
let template_str = template.into_boxed_str();
env.add_function("raise_exception", raise_exception);
// check if contains the tools variable within the template
let use_default_tool_template =
!template_str.as_ref().replace(' ', "").contains("{{tools}}");
// leaking env and template_str as read-only, static resources for performance.
let template = Box::leak(env)
.template_from_str(Box::leak(template_str))
.unwrap();
Self {
template,
bos_token,
eos_token,
use_default_tool_template,
}
}
fn apply(
&self,
mut messages: Vec<Message>,
grammar_with_prompt: Option<(GrammarType, String)>,
) -> Result<String, InferError> {
if self.use_default_tool_template {
if let Some(last_message) = messages.last_mut() {
if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt {
last_message.content.push(MessageChunk::Text(Text {
text: format!("\n---\n{}\n{}", tool_prompt, tools),
}));
}
}
}
let messages: Vec<TextMessage> = messages.into_iter().map(|c| c.into()).collect();
self.template
.render(ChatTemplateInputs {
messages,
bos_token: self.bos_token.as_deref(),
eos_token: self.eos_token.as_deref(),
add_generation_prompt: true,
tools: None,
tools_prompt: None,
})
.map_err(InferError::TemplateError)
}
}
pub struct ToolGrammar {}
impl ToolGrammar {
pub fn apply(
tools: Option<Vec<Tool>>,
tool_choice: Option<ToolType>,
) -> Result<Option<Tools>, InferError> {
if let Some((req_tools, tool_choice)) = tools.zip(tool_choice) {
// let tool_prompt = tool_prompt.unwrap_or_default();
let tools_to_use = match tool_choice {
ToolType::FunctionName(name) => {
vec![req_tools
.iter()
.find(|tool| tool.function.name == *name)
.unwrap_or_else(|| panic!("Tool with name {} not found", name))
.clone()]
}
ToolType::OneOf => req_tools.to_owned(),
};
// adds the error notification function for LLM feedback if required
let mut text_response_properties = Map::new();
text_response_properties.insert(
"error".to_string(),
serde_json::json!({
"type": "string",
"description": "The error or issue to notify"
}),
);
text_response_properties.insert(
"_name".to_string(),
serde_json::json!({
"type": "string",
"const": "notify_error"
}),
);
let functions: HashMap<String, serde_json::Value> = tools_to_use
.iter()
.map(|tool| {
let func = tool.function.clone();
// Clone the existing parameters, which are expected to be a JSON object
let mut params = if let Value::Object(params) = &func.arguments {
params.clone()
} else {
Map::new()
};
// Insert the function's description at the top level, outside of properties
params.insert(
"description".to_string(),
Value::String(func.description.clone().unwrap_or_default()),
);
// Ensure 'properties' exists and is an object
let properties = params
.entry("properties".to_string())
.or_insert_with(|| json!({}))
.as_object_mut()
.unwrap();
// Insert the constant for the function name inside 'properties'
properties.insert(
"_name".to_string(),
json!({
"type": "string",
"const": func.name.clone(),
// "description": "The name of the function"
}),
);
// Check if 'required' exists, and it is an array. If not, create an empty array.
let required = params
.entry("required".to_string())
.or_insert_with(|| json!([]))
.as_array_mut()
.unwrap();
// Add 'name' to the 'required' array if it is not already present
if !required.iter().any(|r| r == "_name") {
required.push(json!("_name"));
}
(func.name, Value::Object(params))
})
.chain([(
"notify_error".to_string(),
serde_json::json!({
"properties": text_response_properties,
"required": ["error", "_name"],
"type": "object"
}),
)])
.collect();
let tools = Tools {
functions_map: FunctionsMap { functions },
properties: Properties {
function: tools_to_use
.iter()
.map(|tool| FunctionRef {
ref_path: format!("#/$functions/{}", tool.function.name.clone()),
})
.chain(std::iter::once(FunctionRef {
ref_path: "#/$functions/notify_error".to_string(),
}))
.collect(),
},
};
return Ok(Some(tools));
}
// Err(InferError::ToolError("No tools provided".to_string()))
Ok(None)
}
}
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
OwnedSemaphorePermit,
u32, // input_length
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);
#[derive(Debug)]
pub(crate) struct GeneratedText {
pub(crate) text: String,
pub(crate) generated_tokens: u32,
pub(crate) finish_reason: FinishReason,
pub(crate) seed: Option<u64>,
}
#[derive(Debug)]
pub(crate) enum InferStreamResponse {
// Optional first message
Prefill(Vec<PrefillToken>),
// Intermediate messages
Intermediate {
token: Token,
top_tokens: Vec<Token>,
},
// Last message
End {
token: Token,
top_tokens: Vec<Token>,
generated_text: GeneratedText,
start: Instant,
queued: Instant,
},
}
#[derive(Debug)]
pub(crate) struct InferResponse {
/// input_length is the input as perceived by the rust tokenizer in the
/// validation pathway. It is redundant with prefill.len() but prefill
/// has data only if the user asked for it. This will always be filled.
pub(crate) _input_length: u32,
pub(crate) prefill: Vec<PrefillToken>,
pub(crate) tokens: Vec<Token>,
pub(crate) generated_text: GeneratedText,
pub(crate) queued: Instant,
pub(crate) start: Instant,
pub(crate) top_tokens: Vec<Vec<Token>>,
}
#[derive(Debug, Error)]
pub enum InferError {
#[error("Request failed during generation: {0}")]
GenerationError(String),
#[error("Model is overloaded")]
Overloaded(#[from] TryAcquireError),
#[error("Input validation error: {0}")]
ValidationError(#[from] ValidationError),
#[error("Incomplete generation")]
IncompleteGeneration,
#[error("Template error: {0}")]
TemplateError(#[from] minijinja::Error),
#[error("Tool error: {0}")]
ToolError(String),
}
impl InferError {
pub(crate) fn error_type(&self) -> &str {
match self {
InferError::GenerationError(_) => "generation",
InferError::Overloaded(_) => "overloaded",
InferError::ValidationError(_) => "validation",
InferError::IncompleteGeneration => "incomplete_generation",
InferError::TemplateError(_) => "template_error",
InferError::ToolError(_) => "tool_error",
}
}
}

View File

@ -0,0 +1,4 @@
mod queue;
mod scheduler;
pub(crate) use scheduler::SchedulerV2;

View File

@ -0,0 +1,667 @@
use crate::infer::{InferError, InferStreamResponse};
use crate::validation::{
ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters,
};
use nohash_hasher::{BuildNoHashHasher, IntMap};
use std::cmp::min;
use std::collections::VecDeque;
use text_generation_client::v2::{
Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters,
};
use text_generation_client::ChunksToString;
use tokio::sync::{mpsc, oneshot};
use tokio::time::Instant;
use tracing::{info_span, instrument, Span};
/// Queue entry
#[derive(Debug)]
pub(crate) struct Entry {
/// Request
pub request: ValidGenerateRequest,
/// Response sender to communicate between the Infer struct and the batching_task
pub response_tx: mpsc::UnboundedSender<Result<InferStreamResponse, InferError>>,
/// Span that will live as long as entry
pub span: Span,
/// Temporary span used as a guard when logging inference, wait times...
pub temp_span: Option<Span>,
/// Instant when this entry was queued
pub queue_time: Instant,
/// Instant when this entry was added to a batch
pub batch_time: Option<Instant>,
}
/// Request Queue
#[derive(Debug, Clone)]
pub(crate) struct Queue {
/// Channel to communicate with the background queue task
queue_sender: mpsc::UnboundedSender<QueueCommand>,
}
impl Queue {
pub(crate) fn new(
requires_padding: bool,
block_size: u32,
window_size: Option<u32>,
speculate: u32,
) -> Self {
// Create channel
let (queue_sender, queue_receiver) = mpsc::unbounded_channel();
// Launch background queue task
tokio::spawn(queue_task(
requires_padding,
block_size,
window_size,
speculate,
queue_receiver,
));
Self { queue_sender }
}
#[instrument(skip_all)]
pub(crate) fn append(&self, entry: Entry) {
// Send append command to the background task managing the state
// Unwrap is safe here
self.queue_sender
.send(QueueCommand::Append(Box::new(entry), Span::current()))
.unwrap();
}
// Get the next batch
#[instrument(skip(self))]
pub(crate) async fn next_batch(
&self,
min_size: Option<usize>,
max_size: Option<usize>,
prefill_token_budget: u32,
token_budget: u32,
) -> Option<NextBatch> {
// Create response channel
let (response_sender, response_receiver) = oneshot::channel();
// Send next batch command to the background task managing the state
// Unwrap is safe here
self.queue_sender
.send(QueueCommand::NextBatch {
min_size,
max_size,
prefill_token_budget,
token_budget,
response_sender,
span: Span::current(),
})
.unwrap();
// Await on response channel
// Unwrap is safe here
response_receiver.await.unwrap()
}
}
// Background task responsible of the queue state
async fn queue_task(
requires_padding: bool,
block_size: u32,
window_size: Option<u32>,
speculate: u32,
mut receiver: mpsc::UnboundedReceiver<QueueCommand>,
) {
let mut state = State::new(requires_padding, block_size, window_size, speculate);
while let Some(cmd) = receiver.recv().await {
match cmd {
QueueCommand::Append(entry, span) => {
span.in_scope(|| state.append(*entry));
metrics::increment_gauge!("tgi_queue_size", 1.0);
}
QueueCommand::NextBatch {
min_size,
max_size,
prefill_token_budget,
token_budget,
response_sender,
span,
} => span.in_scope(|| {
let next_batch =
state.next_batch(min_size, max_size, prefill_token_budget, token_budget);
response_sender.send(next_batch).unwrap();
metrics::gauge!("tgi_queue_size", state.entries.len() as f64);
}),
}
}
}
/// Queue State
#[derive(Debug)]
struct State {
/// Queue entries organized in a Vec
entries: VecDeque<(u64, Entry)>,
/// Id of the next entry
next_id: u64,
/// Id of the next batch
next_batch_id: u64,
/// Whether the model is using padding
requires_padding: bool,
/// Paged Attention block size
block_size: u32,
/// Sliding window
window_size: Option<u32>,
/// Speculation amount
speculate: u32,
}
impl State {
fn new(
requires_padding: bool,
block_size: u32,
window_size: Option<u32>,
speculate: u32,
) -> Self {
Self {
entries: VecDeque::with_capacity(128),
next_id: 0,
next_batch_id: 0,
requires_padding,
block_size,
window_size,
speculate,
}
}
/// Append an entry to the queue
fn append(&mut self, mut entry: Entry) {
// Create a span that will live as long as the entry is in the queue waiting to be batched
let queue_span = info_span!(parent: &entry.span, "queued");
entry.temp_span = Some(queue_span);
// Push entry in the queue
self.entries.push_back((self.next_id, entry));
self.next_id += 1;
}
// Get the next batch
fn next_batch(
&mut self,
min_size: Option<usize>,
max_size: Option<usize>,
prefill_token_budget: u32,
token_budget: u32,
) -> Option<NextBatch> {
if self.entries.is_empty() {
tracing::debug!("No queue");
return None;
}
// Check if we have enough entries
if let Some(min_size) = min_size {
if self.entries.len() < min_size {
tracing::debug!("Not enough entries");
return None;
}
}
// Pad prefill_token_budget to be a multiple of block size
let prefill_token_budget =
((prefill_token_budget + self.block_size - 1) / self.block_size) * self.block_size;
// Create span for this batch to add context to inference calls
let next_batch_span = info_span!(parent: None, "batch", batch_size = tracing::field::Empty);
next_batch_span.follows_from(&Span::current());
let mut batch_requests = Vec::with_capacity(self.entries.len());
let mut batch_entries =
IntMap::with_capacity_and_hasher(self.entries.len(), BuildNoHashHasher::default());
let mut max_input_length = 0;
let mut prefill_tokens: u32 = 0;
let mut decode_tokens: u32 = 0;
// Pop entries starting from the front of the queue
while let Some((id, mut entry)) = self.entries.pop_front() {
// Filter entries where the response receiver was dropped (== entries where the request
// was dropped by the client)
if entry.response_tx.is_closed() {
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
tracing::debug!("Dropping entry");
continue;
}
if self.requires_padding {
// We pad to max input length in the Python shards
// We need to take these padding tokens into the equation
max_input_length = max_input_length.max(entry.request.input_length);
prefill_tokens = (batch_requests.len() + 1) as u32 * max_input_length
} else {
// pad to block size
prefill_tokens += ((entry.request.input_length + self.block_size - 1)
/ self.block_size)
* self.block_size;
}
if self.requires_padding {
decode_tokens += entry.request.stopping_parameters.max_new_tokens;
} else {
let max_new_tokens = match self.window_size {
None => entry.request.stopping_parameters.max_new_tokens,
Some(window_size) => min(
window_size.saturating_sub(entry.request.input_length),
entry.request.stopping_parameters.max_new_tokens,
),
};
// pad to block size
decode_tokens +=
((max_new_tokens + self.block_size - 1) / self.block_size) * self.block_size;
}
if prefill_tokens > prefill_token_budget
|| (prefill_tokens + decode_tokens + self.speculate) > token_budget
{
// Entry is over budget
// Add it back to the front
tracing::debug!("Over budget: prefill_tokens={prefill_tokens} > {prefill_token_budget} || {prefill_tokens} + {decode_tokens} + {} > {token_budget}", self.speculate);
self.entries.push_front((id, entry));
break;
}
tracing::debug!("Accepting entry");
// Create a new span to link the batch back to this entry
let entry_batch_span = info_span!(parent: &entry.span, "infer");
// Add relationships
next_batch_span.follows_from(&entry_batch_span);
entry_batch_span.follows_from(&next_batch_span);
// Update entry
entry.temp_span = Some(entry_batch_span);
batch_requests.push(Request {
id,
prefill_logprobs: entry.request.decoder_input_details,
inputs: entry.request.inputs.chunks_to_string(),
truncate: entry.request.truncate,
parameters: Some(NextTokenChooserParameters::from(
entry.request.parameters.clone(),
)),
stopping_parameters: Some(StoppingCriteriaParameters::from(
entry.request.stopping_parameters.clone(),
)),
top_n_tokens: entry.request.top_n_tokens,
});
// Set batch_time
entry.batch_time = Some(Instant::now());
// Insert in batch_entries IntMap
batch_entries.insert(id, entry);
// Check if max_size
if Some(batch_requests.len()) == max_size {
break;
}
}
// Empty batch
if batch_requests.is_empty() {
tracing::debug!("Filtered out all entries");
return None;
}
// Check if our batch is big enough
if let Some(min_size) = min_size {
// Batch is too small
if batch_requests.len() < min_size {
// Add back entries to the queue in the correct order
for r in batch_requests.into_iter().rev() {
let id = r.id;
let entry = batch_entries.remove(&id).unwrap();
self.entries.push_front((id, entry));
}
return None;
}
}
// Final batch size
let size = batch_requests.len() as u32;
next_batch_span.record("batch_size", size);
let batch = Batch {
id: self.next_batch_id,
requests: batch_requests,
size,
max_tokens: (prefill_tokens + decode_tokens),
};
// Increment batch id
self.next_batch_id += 1;
metrics::histogram!("tgi_batch_next_size", batch.size as f64);
Some((batch_entries, batch, next_batch_span))
}
}
type NextBatch = (IntMap<u64, Entry>, Batch, Span);
#[derive(Debug)]
enum QueueCommand {
Append(Box<Entry>, Span),
NextBatch {
min_size: Option<usize>,
max_size: Option<usize>,
prefill_token_budget: u32,
token_budget: u32,
response_sender: oneshot::Sender<Option<NextBatch>>,
span: Span,
},
}
impl From<ValidParameters> for NextTokenChooserParameters {
fn from(value: ValidParameters) -> Self {
let (grammar, grammar_type) = match value.grammar {
None => (String::new(), GrammarType::None),
Some(grammar) => match grammar {
ValidGrammar::Json(grammar_string) => (grammar_string, GrammarType::Json),
ValidGrammar::Regex(grammar_string) => (grammar_string, GrammarType::Regex),
},
};
Self {
temperature: value.temperature,
top_k: value.top_k,
top_p: value.top_p,
typical_p: value.typical_p,
do_sample: value.do_sample,
seed: value.seed,
repetition_penalty: value.repetition_penalty,
frequency_penalty: value.frequency_penalty,
watermark: value.watermark,
grammar,
grammar_type: grammar_type.into(),
}
}
}
impl From<ValidStoppingParameters> for StoppingCriteriaParameters {
fn from(value: ValidStoppingParameters) -> Self {
Self {
max_new_tokens: value.max_new_tokens,
stop_sequences: value.stop_sequences,
ignore_eos_token: value.ignore_eos_token,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use tracing::info_span;
fn default_entry() -> (
Entry,
mpsc::UnboundedReceiver<Result<InferStreamResponse, InferError>>,
) {
let (response_tx, receiver_tx) = mpsc::unbounded_channel();
let entry = Entry {
request: ValidGenerateRequest {
inputs: vec![],
input_length: 0,
truncate: 0,
decoder_input_details: false,
parameters: ValidParameters {
temperature: 0.0,
top_k: 0,
top_p: 0.0,
typical_p: 0.0,
do_sample: false,
seed: 0,
repetition_penalty: 0.0,
frequency_penalty: 0.0,
watermark: false,
grammar: None,
},
stopping_parameters: ValidStoppingParameters {
ignore_eos_token: false,
max_new_tokens: 1,
stop_sequences: vec![],
},
top_n_tokens: 0,
},
response_tx,
span: info_span!("entry"),
temp_span: None,
queue_time: Instant::now(),
batch_time: None,
};
(entry, receiver_tx)
}
#[test]
fn test_append() {
let mut state = State::new(false, 1, None, 0);
let (entry, _guard) = default_entry();
assert_eq!(state.next_id, 0);
assert_eq!(state.entries.len(), 0);
state.append(entry);
assert_eq!(state.next_id, 1);
assert_eq!(state.entries.len(), 1);
let (id, _) = state.entries.remove(0).unwrap();
assert_eq!(id, 0);
}
#[test]
fn test_next_batch_empty() {
let mut state = State::new(false, 1, None, 0);
assert!(state.next_batch(None, None, 1, 1).is_none());
assert!(state.next_batch(Some(1), None, 1, 1).is_none());
}
#[test]
fn test_next_batch_min_size() {
let mut state = State::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
state.append(entry1);
state.append(entry2);
let (entries, batch, _) = state.next_batch(None, None, 2, 2).unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&0));
assert!(entries.contains_key(&1));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert!(entries.get(&1).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 2);
assert_eq!(state.next_id, 2);
assert_eq!(state.entries.len(), 0);
assert_eq!(state.next_batch_id, 1);
let (entry3, _guard3) = default_entry();
state.append(entry3);
assert!(state.next_batch(Some(2), None, 2, 2).is_none());
assert_eq!(state.next_id, 3);
assert_eq!(state.entries.len(), 1);
let (id, _) = state.entries.remove(0).unwrap();
assert_eq!(id, 2);
}
#[test]
fn test_next_batch_max_size() {
let mut state = State::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
state.append(entry1);
state.append(entry2);
let (entries, batch, _) = state.next_batch(None, Some(1), 2, 2).unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
assert_eq!(state.next_id, 2);
assert_eq!(state.entries.len(), 1);
assert_eq!(state.next_batch_id, 1);
}
#[test]
fn test_next_batch_token_budget() {
let mut state = State::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
state.append(entry1);
state.append(entry2);
let (entries, batch, _) = state.next_batch(None, None, 1, 1).unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
assert_eq!(state.next_id, 2);
assert_eq!(state.entries.len(), 1);
assert_eq!(state.next_batch_id, 1);
let (entry3, _guard3) = default_entry();
state.append(entry3);
let (entries, batch, _) = state.next_batch(None, None, 3, 3).unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&1));
assert!(entries.contains_key(&2));
assert_eq!(batch.id, 1);
assert_eq!(batch.size, 2);
assert_eq!(state.next_id, 3);
assert_eq!(state.entries.len(), 0);
assert_eq!(state.next_batch_id, 2);
}
#[tokio::test]
async fn test_queue_append() {
let queue = Queue::new(false, 1, None, 0);
let (entry, _guard) = default_entry();
queue.append(entry);
}
#[tokio::test]
async fn test_queue_next_batch_empty() {
let queue = Queue::new(false, 1, None, 0);
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
assert!(queue.next_batch(Some(1), None, 1, 1).await.is_none());
}
#[tokio::test]
async fn test_queue_next_batch_min_size() {
let queue = Queue::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
let (entries, batch, _) = queue.next_batch(None, None, 2, 2).await.unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&0));
assert!(entries.contains_key(&1));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert!(entries.get(&1).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 2);
let (entry3, _guard3) = default_entry();
queue.append(entry3);
// Not enough requests pending
assert!(queue.next_batch(Some(2), None, 2, 2).await.is_none());
// Not enough token budget
assert!(queue.next_batch(Some(1), None, 0, 0).await.is_none());
// Ok
let (entries2, batch2, _) = queue.next_batch(Some(1), None, 2, 2).await.unwrap();
assert_eq!(entries2.len(), 1);
assert!(entries2.contains_key(&2));
assert!(entries2.get(&2).unwrap().batch_time.is_some());
assert_eq!(batch2.id, 1);
assert_eq!(batch2.size, 1);
}
#[tokio::test]
async fn test_queue_next_batch_max_size() {
let queue = Queue::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
let (entries, batch, _) = queue.next_batch(None, Some(1), 2, 2).await.unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert!(entries.get(&0).unwrap().batch_time.is_some());
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
}
#[tokio::test]
async fn test_queue_next_batch_token_budget() {
let queue = Queue::new(false, 1, None, 0);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
let (entries, batch, _) = queue.next_batch(None, None, 1, 1).await.unwrap();
assert_eq!(entries.len(), 1);
assert!(entries.contains_key(&0));
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 1);
let (entry3, _guard3) = default_entry();
queue.append(entry3);
let (entries, batch, _) = queue.next_batch(None, None, 3, 3).await.unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&1));
assert!(entries.contains_key(&2));
assert_eq!(batch.id, 1);
assert_eq!(batch.size, 2);
}
#[tokio::test]
async fn test_queue_next_batch_token_speculate() {
let queue = Queue::new(false, 1, None, 2);
let (entry1, _guard1) = default_entry();
let (entry2, _guard2) = default_entry();
queue.append(entry1);
queue.append(entry2);
// Budget of 1 is not enough
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
let (entries, batch, _) = queue.next_batch(None, None, 6, 6).await.unwrap();
assert_eq!(entries.len(), 2);
assert!(entries.contains_key(&0));
assert!(entries.contains_key(&1));
assert_eq!(batch.id, 0);
assert_eq!(batch.size, 2);
}
#[tokio::test]
async fn test_queue_next_batch_dropped_receiver() {
let queue = Queue::new(false, 1, None, 0);
let (entry, _) = default_entry();
queue.append(entry);
assert!(queue.next_batch(None, None, 1, 1).await.is_none());
}
}

View File

@ -1,79 +1,46 @@
/// Batching and inference logic
use crate::validation::{Validation, ValidationError};
use crate::{
ChatTemplateInputs, ChatTemplateVersions, Entry, GenerateRequest, GenerateStreamResponse,
HubProcessorConfig, HubTokenizerConfig, Message, MessageChunk, PrefillToken, Queue, Text,
TextMessage, Token,
use crate::infer::v2::queue::{Entry, Queue};
use crate::infer::{
GenerateStreamResponse, GeneratedText, InferError, InferStreamResponse, Scheduler,
};
use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools};
use futures::future::try_join_all;
use minijinja::{Environment, ErrorKind, Template};
use crate::validation::ValidGenerateRequest;
use crate::{FinishReason, PrefillToken, Token};
use nohash_hasher::IntMap;
use serde_json::{json, Map, Value};
use std::collections::HashMap;
use std::sync::{
atomic::{AtomicBool, Ordering},
Arc,
};
use text_generation_client::{
Batch, CachedBatch, ClientError, GeneratedText, Generation, ShardedClient, Tokens,
};
use thiserror::Error;
use text_generation_client::v2::{Batch, CachedBatch, Generation, ShardedClient};
use text_generation_client::ClientError;
use tokio::sync::mpsc::error::SendError;
use tokio::sync::{mpsc, Notify, Semaphore, TryAcquireError};
use tokio::sync::{mpsc, Notify, OwnedSemaphorePermit};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
use tracing::{info_span, instrument, Instrument, Span};
/// Inference struct
#[derive(Clone)]
pub struct Infer {
/// Validation
validation: Validation,
pub(crate) struct SchedulerV2 {
/// Request queue
queue: Queue,
/// Shared state
shared: Arc<Shared>,
/// Chat template
chat_template: Option<ChatTemplate>,
/// Inference limit
limit_concurrent_requests: Arc<Semaphore>,
/// Notify batcher on queue appends
batching_task_notifier: Arc<Notify>,
}
/// Infer shared state
struct Shared {
/// Batching background Tokio task notifier
batching_task: Notify,
}
/// Raise a exception (custom function) used in the chat templates
fn raise_exception(err_text: String) -> Result<String, minijinja::Error> {
Err(minijinja::Error::new(ErrorKind::SyntaxError, err_text))
}
impl Infer {
impl SchedulerV2 {
#[allow(clippy::too_many_arguments)]
pub(crate) fn new(
client: ShardedClient,
validation: Validation,
waiting_served_ratio: f32,
max_batch_prefill_tokens: u32,
max_batch_total_tokens: u32,
max_waiting_tokens: usize,
max_batch_size: Option<usize>,
max_concurrent_requests: usize,
requires_padding: bool,
window_size: Option<u32>,
speculate: u32,
generation_health: Arc<AtomicBool>,
tokenizer_config: HubTokenizerConfig,
processor_config: HubProcessorConfig,
) -> Self {
let queue = Queue::new(requires_padding, 16, window_size, speculate);
let shared = Arc::new(Shared {
batching_task: Notify::new(),
});
let batching_task_notifier = Arc::new(Notify::new());
// Spawn batching background task that contains all the inference logic
tokio::spawn(batching_task(
@ -84,72 +51,31 @@ impl Infer {
max_waiting_tokens,
max_batch_size,
queue.clone(),
shared.clone(),
batching_task_notifier.clone(),
generation_health,
));
let chat_template = tokenizer_config
.chat_template
.or(processor_config.chat_template)
.and_then(|t| match t {
ChatTemplateVersions::Single(template) => Some(template),
ChatTemplateVersions::Multiple(templates) => templates
.into_iter()
.find(|t| t.name == "default")
.map(|t| t.template),
})
.map(|t| {
// .strip() is not supported in minijinja
// .capitalize() is not supported in minijinja but we can use | capitalize
let t = t
.replace(".strip()", " | trim")
.replace(".capitalize()", " | capitalize");
ChatTemplate::new(t, tokenizer_config.bos_token, tokenizer_config.eos_token)
});
// Inference limit with a semaphore
let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));
Self {
validation,
queue,
shared,
chat_template,
limit_concurrent_requests: semaphore,
batching_task_notifier,
}
}
}
/// Add a new request to the queue and return a stream of InferStreamResponse
impl Scheduler for SchedulerV2 {
#[instrument(skip_all)]
pub(crate) async fn generate_stream(
fn schedule(
&self,
request: GenerateRequest,
request: ValidGenerateRequest,
permit: OwnedSemaphorePermit,
) -> Result<GenerateStreamResponse, InferError> {
// Limit concurrent requests by acquiring a permit from the semaphore
let permit = self
.clone()
.limit_concurrent_requests
.try_acquire_owned()
.map_err(|err| {
metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
tracing::error!("{err}");
err
})?;
// Validate request
let valid_request = self.validation.validate(request).await.map_err(|err| {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
tracing::error!("{err}");
err
})?;
// MPSC channel to communicate with the background batching task
let (response_tx, response_rx) = mpsc::unbounded_channel();
let input_length = valid_request.input_length;
let input_length = request.input_length;
// Append the request to the queue
self.queue.append(Entry {
request: valid_request,
request,
response_tx,
span: Span::current(),
temp_span: None,
@ -159,7 +85,7 @@ impl Infer {
// Notify the background task that we have a new entry in the queue that needs
// to be batched
self.shared.batching_task.notify_one();
self.batching_task_notifier.notify_one();
// Return stream
Ok((
@ -168,343 +94,6 @@ impl Infer {
UnboundedReceiverStream::new(response_rx),
))
}
/// Tokenizer the input
#[instrument(skip_all)]
pub(crate) async fn tokenize(
&self,
request: GenerateRequest,
) -> Result<Option<tokenizers::Encoding>, InferError> {
// Tokenize request
let inputs = request.inputs;
let truncate = request.parameters.truncate;
let encoding = self
.validation
.tokenize(inputs, truncate)
.await
.map_err(|err| {
tracing::error!("Tokenization {err}");
err
})?;
// Return Encoding
Ok(encoding.map(|(encoding, _)| encoding))
}
/// Apply the chat template to the chat request
#[instrument(skip_all)]
pub(crate) fn apply_chat_template(
&self,
messages: Vec<Message>,
grammar_with_prompt: Option<(GrammarType, String)>,
) -> Result<String, InferError> {
self.chat_template
.as_ref()
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
.apply(messages, grammar_with_prompt)
.map_err(|e| {
metrics::increment_counter!("tgi_request_failure", "err" => "template");
tracing::error!("{e}");
e
})
}
/// Add a new request to the queue and return a InferResponse
#[instrument(skip_all)]
pub(crate) async fn generate(
&self,
request: GenerateRequest,
) -> Result<InferResponse, InferError> {
let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);
// Create stream and keep semaphore permit as long as generate lives
let (_permit, _input_length, mut stream) = self.generate_stream(request).await?;
// Return values
let mut result_prefill = Vec::new();
let mut result_tokens = Vec::new();
let mut result_top_tokens = Vec::new();
let mut result_generated_text = None;
let mut result_start = None;
let mut result_queued = None;
// Iterate on stream
while let Some(response) = stream.next().await {
match response? {
// Add prefill tokens
InferStreamResponse::Prefill(tokens) => {
// Create Token objects
// We do that here instead of in the Python code as Rust for loops are faster
result_prefill = tokens
.ids
.into_iter()
.zip(tokens.logprobs.into_iter())
.zip(tokens.texts.into_iter())
.map(|((id, logprob), text)| PrefillToken { id, text, logprob })
.collect();
}
// Push last token
InferStreamResponse::Intermediate { token, top_tokens } => {
result_tokens.push(token);
result_top_tokens.push(top_tokens);
}
// Final message
// Set return values
InferStreamResponse::End {
token,
generated_text,
start,
queued,
top_tokens,
} => {
result_tokens.push(token);
result_top_tokens.push(top_tokens);
result_generated_text = Some(generated_text);
result_start = Some(start);
result_queued = Some(queued)
}
}
}
// Check that we received a `InferStreamResponse::End` message
if let (Some(generated_text), Some(queued), Some(start)) =
(result_generated_text, result_queued, result_start)
{
Ok(InferResponse {
prefill: result_prefill,
_input_length,
tokens: result_tokens,
generated_text,
queued,
start,
top_tokens: if use_top_tokens {
result_top_tokens
} else {
Vec::new()
},
})
} else {
let err = InferError::IncompleteGeneration;
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
tracing::error!("{err}");
Err(err)
}
}
/// Add best_of new requests to the queue and return a InferResponse of the sequence with
/// the highest log probability per token
#[instrument(skip(self, request))]
pub(crate) async fn generate_best_of(
&self,
request: GenerateRequest,
best_of: usize,
) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
// validate best_of parameter separately
let best_of = self.validation.validate_best_of(best_of)?;
// create multiple generate requests
let mut infer_responses: Vec<InferResponse> =
try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;
// get the sequence with the highest log probability per token
let mut max_index = 0;
let mut max_logprob: f32 = f32::MIN;
for (i, response) in infer_responses.iter().enumerate() {
// mean logprobs of the generated tokens
let sequence_logprob = response
.tokens
.iter()
.map(|token| token.logprob)
.sum::<f32>()
/ response.tokens.len() as f32;
// set best sequence
if sequence_logprob > max_logprob {
max_index = i;
max_logprob = sequence_logprob;
}
}
let best_response = infer_responses.remove(max_index);
Ok((best_response, infer_responses))
}
}
#[derive(Clone)]
struct ChatTemplate {
template: Template<'static, 'static>,
bos_token: Option<String>,
eos_token: Option<String>,
use_default_tool_template: bool,
}
impl ChatTemplate {
fn new(template: String, bos_token: Option<String>, eos_token: Option<String>) -> Self {
let mut env = Box::new(Environment::new());
let template_str = template.into_boxed_str();
env.add_function("raise_exception", raise_exception);
// check if contains the tools variable within the template
let use_default_tool_template =
!template_str.as_ref().replace(' ', "").contains("{{tools}}");
// leaking env and template_str as read-only, static resources for performance.
let template = Box::leak(env)
.template_from_str(Box::leak(template_str))
.unwrap();
Self {
template,
bos_token,
eos_token,
use_default_tool_template,
}
}
fn apply(
&self,
mut messages: Vec<Message>,
grammar_with_prompt: Option<(GrammarType, String)>,
) -> Result<String, InferError> {
if self.use_default_tool_template {
if let Some(last_message) = messages.last_mut() {
if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt {
last_message.content.push(MessageChunk::Text(Text {
text: format!("\n---\n{}\n{}", tool_prompt, tools),
}));
}
}
}
let messages: Vec<TextMessage> = messages.into_iter().map(|c| c.into()).collect();
self.template
.render(ChatTemplateInputs {
messages,
bos_token: self.bos_token.as_deref(),
eos_token: self.eos_token.as_deref(),
add_generation_prompt: true,
tools: None,
tools_prompt: None,
})
.map_err(InferError::TemplateError)
}
}
pub struct ToolGrammar {}
impl ToolGrammar {
pub fn apply(
tools: Option<Vec<Tool>>,
tool_choice: Option<ToolType>,
) -> Result<Option<Tools>, InferError> {
if let Some((req_tools, tool_choice)) = tools.zip(tool_choice) {
// let tool_prompt = tool_prompt.unwrap_or_default();
let tools_to_use = match tool_choice {
ToolType::FunctionName(name) => {
vec![req_tools
.iter()
.find(|tool| tool.function.name == *name)
.unwrap_or_else(|| panic!("Tool with name {} not found", name))
.clone()]
}
ToolType::OneOf => req_tools.to_owned(),
};
// adds the error notification function for LLM feedback if required
let mut text_response_properties = Map::new();
text_response_properties.insert(
"error".to_string(),
serde_json::json!({
"type": "string",
"description": "The error or issue to notify"
}),
);
text_response_properties.insert(
"_name".to_string(),
serde_json::json!({
"type": "string",
"const": "notify_error"
}),
);
let functions: HashMap<String, serde_json::Value> = tools_to_use
.iter()
.map(|tool| {
let func = tool.function.clone();
// Clone the existing parameters, which are expected to be a JSON object
let mut params = if let Value::Object(params) = &func.arguments {
params.clone()
} else {
Map::new()
};
// Insert the function's description at the top level, outside of properties
params.insert(
"description".to_string(),
Value::String(func.description.clone().unwrap_or_default()),
);
// Ensure 'properties' exists and is an object
let properties = params
.entry("properties".to_string())
.or_insert_with(|| json!({}))
.as_object_mut()
.unwrap();
// Insert the constant for the function name inside 'properties'
properties.insert(
"_name".to_string(),
json!({
"type": "string",
"const": func.name.clone(),
// "description": "The name of the function"
}),
);
// Check if 'required' exists, and it is an array. If not, create an empty array.
let required = params
.entry("required".to_string())
.or_insert_with(|| json!([]))
.as_array_mut()
.unwrap();
// Add 'name' to the 'required' array if it is not already present
if !required.iter().any(|r| r == "_name") {
required.push(json!("_name"));
}
(func.name, Value::Object(params))
})
.chain([(
"notify_error".to_string(),
serde_json::json!({
"properties": text_response_properties,
"required": ["error", "_name"],
"type": "object"
}),
)])
.collect();
let tools = Tools {
functions_map: FunctionsMap { functions },
properties: Properties {
function: tools_to_use
.iter()
.map(|tool| FunctionRef {
ref_path: format!("#/$functions/{}", tool.function.name.clone()),
})
.chain(std::iter::once(FunctionRef {
ref_path: "#/$functions/notify_error".to_string(),
}))
.collect(),
},
};
return Ok(Some(tools));
}
// Err(InferError::ToolError("No tools provided".to_string()))
Ok(None)
}
}
/// Batching logic
@ -512,7 +101,7 @@ impl ToolGrammar {
///
/// Batches requests and sends them to the inference server
#[allow(clippy::too_many_arguments)]
async fn batching_task(
pub(crate) async fn batching_task(
mut client: ShardedClient,
waiting_served_ratio: f32,
max_batch_prefill_tokens: u32,
@ -520,13 +109,13 @@ async fn batching_task(
max_waiting_tokens: usize,
max_batch_size: Option<usize>,
queue: Queue,
shared: Arc<Shared>,
notifier: Arc<Notify>,
generation_health: Arc<AtomicBool>,
) {
// Infinite loop
loop {
// Wait for a notification from the Infer struct
shared.batching_task.notified().await;
notifier.notified().await;
// Get the next batch from the queue
// This batch might be smaller than the maximum batch size if there are not enough requests
@ -792,6 +381,16 @@ fn send_responses(
let mut stopped = false;
if let Some(prefill_tokens) = generation.prefill_tokens {
// Create Token objects
// We do that here instead of in the Python code as Rust for loops are faster
let prefill_tokens = prefill_tokens
.ids
.into_iter()
.zip(prefill_tokens.logprobs)
.zip(prefill_tokens.texts)
.map(|((id, logprob), text)| PrefillToken { id, text, logprob })
.collect();
// Send message
entry
.response_tx
@ -842,7 +441,7 @@ fn send_responses(
entry.response_tx.send(Ok(InferStreamResponse::End {
token,
top_tokens,
generated_text: generated_text.clone(),
generated_text: GeneratedText::from(generated_text.clone()),
queued: entry.queue_time,
start: entry.batch_time.unwrap(),
}))?;
@ -877,64 +476,21 @@ fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
});
}
#[derive(Debug)]
pub(crate) enum InferStreamResponse {
// Optional first message
Prefill(Tokens),
// Intermediate messages
Intermediate {
token: Token,
top_tokens: Vec<Token>,
},
// Last message
End {
token: Token,
top_tokens: Vec<Token>,
generated_text: GeneratedText,
start: Instant,
queued: Instant,
},
}
impl From<text_generation_client::v2::GeneratedText> for GeneratedText {
fn from(value: text_generation_client::v2::GeneratedText) -> Self {
let v2_finish_reason =
text_generation_client::v2::FinishReason::try_from(value.finish_reason).unwrap();
let finish_reason = match v2_finish_reason {
text_generation_client::v2::FinishReason::Length => FinishReason::Length,
text_generation_client::v2::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
text_generation_client::v2::FinishReason::StopSequence => FinishReason::StopSequence,
};
#[derive(Debug)]
pub(crate) struct InferResponse {
/// input_length is the input as perceived by the rust tokenizer in the
/// validation pathway. It is redundant with prefill.len() but prefill
/// has data only if the user asked for it. This will always be filled.
pub(crate) _input_length: u32,
pub(crate) prefill: Vec<PrefillToken>,
pub(crate) tokens: Vec<Token>,
pub(crate) generated_text: GeneratedText,
pub(crate) queued: Instant,
pub(crate) start: Instant,
pub(crate) top_tokens: Vec<Vec<Token>>,
}
#[derive(Debug, Error)]
pub enum InferError {
#[error("Request failed during generation: {0}")]
GenerationError(String),
#[error("Model is overloaded")]
Overloaded(#[from] TryAcquireError),
#[error("Input validation error: {0}")]
ValidationError(#[from] ValidationError),
#[error("Incomplete generation")]
IncompleteGeneration,
#[error("Template error: {0}")]
TemplateError(#[from] minijinja::Error),
#[error("Tool error: {0}")]
ToolError(String),
}
impl InferError {
pub(crate) fn error_type(&self) -> &str {
match self {
InferError::GenerationError(_) => "generation",
InferError::Overloaded(_) => "overloaded",
InferError::ValidationError(_) => "validation",
InferError::IncompleteGeneration => "incomplete_generation",
InferError::TemplateError(_) => "template_error",
InferError::ToolError(_) => "tool_error",
Self {
text: value.text,
generated_tokens: value.generated_tokens,
finish_reason,
seed: value.seed,
}
}
}

View File

@ -0,0 +1,4 @@
mod queue;
mod scheduler;
pub(crate) use scheduler::SchedulerV3;

View File

@ -1,12 +1,14 @@
use crate::infer::InferError;
use crate::infer::InferStreamResponse;
use crate::validation::ValidGenerateRequest;
use crate::infer::{InferError, InferStreamResponse};
use crate::validation::{
ValidGenerateRequest, ValidGrammar, ValidParameters, ValidStoppingParameters,
};
use nohash_hasher::{BuildNoHashHasher, IntMap};
use std::cmp::min;
use std::collections::VecDeque;
use text_generation_client::ChunksToString;
use text_generation_client::Input;
use text_generation_client::{Batch, Request};
use text_generation_client::v3::{
Batch, GrammarType, NextTokenChooserParameters, Request, StoppingCriteriaParameters,
};
use text_generation_client::{ChunksToString, Input};
use tokio::sync::{mpsc, oneshot};
use tokio::time::Instant;
use tracing::{info_span, instrument, Span};
@ -57,7 +59,6 @@ impl Queue {
Self { queue_sender }
}
/// Append an entry to the queue
#[instrument(skip_all)]
pub(crate) fn append(&self, entry: Entry) {
// Send append command to the background task managing the state
@ -280,13 +281,17 @@ impl State {
batch_requests.push(Request {
id,
prefill_logprobs: entry.request.decoder_input_details,
inputs: entry.request.inputs.chunks_to_string(),
input_chunks: Some(Input {
chunks: entry.request.inputs.clone(),
}),
inputs: entry.request.inputs.chunks_to_string(),
truncate: entry.request.truncate,
parameters: Some(entry.request.parameters.clone()),
stopping_parameters: Some(entry.request.stopping_parameters.clone()),
parameters: Some(NextTokenChooserParameters::from(
entry.request.parameters.clone(),
)),
stopping_parameters: Some(StoppingCriteriaParameters::from(
entry.request.stopping_parameters.clone(),
)),
top_n_tokens: entry.request.top_n_tokens,
});
// Set batch_time
@ -355,12 +360,46 @@ enum QueueCommand {
},
}
impl From<ValidParameters> for NextTokenChooserParameters {
fn from(value: ValidParameters) -> Self {
let (grammar, grammar_type) = match value.grammar {
None => (String::new(), GrammarType::None),
Some(grammar) => match grammar {
ValidGrammar::Json(grammar_string) => (grammar_string, GrammarType::Json),
ValidGrammar::Regex(grammar_string) => (grammar_string, GrammarType::Regex),
},
};
Self {
temperature: value.temperature,
top_k: value.top_k,
top_p: value.top_p,
typical_p: value.typical_p,
do_sample: value.do_sample,
seed: value.seed,
repetition_penalty: value.repetition_penalty,
frequency_penalty: value.frequency_penalty,
watermark: value.watermark,
grammar,
grammar_type: grammar_type.into(),
}
}
}
impl From<ValidStoppingParameters> for StoppingCriteriaParameters {
fn from(value: ValidStoppingParameters) -> Self {
Self {
max_new_tokens: value.max_new_tokens,
stop_sequences: value.stop_sequences,
ignore_eos_token: value.ignore_eos_token,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use text_generation_client::{
GrammarType as ProtoGrammarType, NextTokenChooserParameters, StoppingCriteriaParameters,
};
use tracing::info_span;
fn default_entry() -> (
@ -375,7 +414,7 @@ mod tests {
input_length: 0,
truncate: 0,
decoder_input_details: false,
parameters: NextTokenChooserParameters {
parameters: ValidParameters {
temperature: 0.0,
top_k: 0,
top_p: 0.0,
@ -385,10 +424,9 @@ mod tests {
repetition_penalty: 0.0,
frequency_penalty: 0.0,
watermark: false,
grammar: String::new(),
grammar_type: ProtoGrammarType::None as i32,
grammar: None,
},
stopping_parameters: StoppingCriteriaParameters {
stopping_parameters: ValidStoppingParameters {
ignore_eos_token: false,
max_new_tokens: 1,
stop_sequences: vec![],

File diff suppressed because it is too large Load Diff

View File

@ -1,27 +1,14 @@
pub mod config;
mod health;
/// Text Generation Inference Webserver
pub mod config;
mod infer;
mod queue;
pub mod server;
mod validation;
use infer::{Infer, InferError, InferStreamResponse};
use queue::{Entry, Queue};
use serde::{Deserialize, Serialize};
use tokio::sync::OwnedSemaphorePermit;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::warn;
use utoipa::ToSchema;
use validation::Validation;
/// Type alias for generation responses
pub(crate) type GenerateStreamResponse = (
OwnedSemaphorePermit,
u32, // input_length
UnboundedReceiverStream<Result<InferStreamResponse, InferError>>,
);
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
#[schema(example = "What is Deep Learning?")]
@ -158,7 +145,7 @@ pub struct Info {
#[schema(example = "4")]
pub max_stop_sequences: usize,
#[schema(example = "1024")]
pub max_input_length: usize,
pub max_input_tokens: usize,
#[schema(example = "2048")]
pub max_total_tokens: usize,
#[schema(example = "1.2")]
@ -1087,7 +1074,7 @@ pub struct SimpleToken {
stop: usize,
}
#[derive(Serialize, ToSchema)]
#[derive(Debug, Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
#[schema(example = "Length")]
pub(crate) enum FinishReason {

View File

@ -12,7 +12,6 @@ use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
use text_generation_client::{ClientError, ShardedClient};
use text_generation_router::config::Config;
use text_generation_router::{server, HubModelInfo, HubProcessorConfig, HubTokenizerConfig};
use thiserror::Error;
@ -315,59 +314,6 @@ async fn main() -> Result<(), RouterError> {
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
};
// Instantiate sharded client from the master unix socket
let mut sharded_client = ShardedClient::connect_uds(master_shard_uds_path)
.await
.map_err(RouterError::Connection)?;
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(RouterError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(RouterError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_supported_batch_total_tokens = match sharded_client
.warmup(
max_input_tokens as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_size,
)
.await
.map_err(RouterError::Warmup)?
{
// Older models do not support automatic max-batch-total-tokens
None => {
let max_batch_total_tokens = max_batch_total_tokens
.unwrap_or(16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)));
tracing::warn!("Model does not support automatic max batch total tokens");
max_batch_total_tokens
}
// Flash attention models return their max supported total tokens
Some(max_supported_batch_total_tokens) => {
// Warn if user added his own max-batch-total-tokens as we will ignore it
if max_batch_total_tokens.is_some() {
tracing::warn!(
"`--max-batch-total-tokens` is deprecated for Flash \
Attention models."
);
tracing::warn!(
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
);
}
if max_total_tokens as u32 > max_supported_batch_total_tokens {
return Err(RouterError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_supported_batch_total_tokens}")));
}
max_supported_batch_total_tokens
}
};
tracing::info!("Setting max batch total tokens to {max_supported_batch_total_tokens}");
tracing::info!("Connected");
// Determine the server port based on the feature and environment variable.
let port = if cfg!(feature = "google") {
std::env::var("AIP_HTTP_PORT")
@ -387,8 +333,8 @@ async fn main() -> Result<(), RouterError> {
// Run server
server::run(
master_shard_uds_path,
model_info,
shard_info,
compat_return_full_text,
max_concurrent_requests,
max_best_of,
@ -398,10 +344,9 @@ async fn main() -> Result<(), RouterError> {
max_total_tokens,
waiting_served_ratio,
max_batch_prefill_tokens,
max_supported_batch_total_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
sharded_client,
tokenizer,
config,
validation_workers,
@ -557,16 +502,8 @@ pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConf
enum RouterError {
#[error("Argument validation error: {0}")]
ArgumentValidation(String),
#[error("Unable to connect to the Python model shards: {0}")]
Connection(ClientError),
#[error("Unable to clear the Python model shards cache: {0}")]
Cache(ClientError),
#[error("Unable to get the Python model shards info: {0}")]
Info(ClientError),
#[error("Unable to warmup the Python model shards: {0}")]
Warmup(ClientError),
#[error("WebServer error: {0}")]
WebServer(#[from] server::WebServerError),
#[error("Tokio runtime failed to start: {0}")]
Tokio(#[from] std::io::Error),
#[error("Axum webserver failed: {0}")]
Axum(#[from] axum::BoxError),
}

View File

@ -1,13 +1,15 @@
use crate::config::Config;
/// HTTP Server logic
use crate::health::Health;
use crate::infer::{InferError, InferResponse, InferStreamResponse, ToolGrammar};
use crate::config::Config;
use crate::infer::v2::SchedulerV2;
use crate::infer::v3::SchedulerV3;
use crate::infer::{HealthCheck, Scheduler};
use crate::infer::{Infer, InferError, InferResponse, InferStreamResponse, ToolGrammar};
use crate::validation::ValidationError;
use crate::{
BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Infer,
Info, Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token,
TokenizeResponse, Usage, Validation,
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info,
Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse,
Usage, Validation,
};
use crate::{
ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
@ -34,7 +36,8 @@ use std::convert::Infallible;
use std::net::SocketAddr;
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
use text_generation_client::{ShardInfo, ShardedClient};
use text_generation_client::{v2, v3, ClientError, ShardInfo};
use thiserror::Error;
use tokenizers::Tokenizer;
use tokio::select;
use tokio::signal;
@ -115,7 +118,9 @@ example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)]
#[instrument(skip(health))]
/// Health check method
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
async fn health(
mut health: Extension<HealthCheck>,
) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
match health.check().await {
true => Ok(()),
false => Err((
@ -213,9 +218,7 @@ async fn generate_internal(
BestOfSequence {
generated_text: output_text,
finish_reason: FinishReason::from(
response.generated_text.finish_reason,
),
finish_reason: response.generated_text.finish_reason,
generated_tokens: response.generated_text.generated_tokens,
prefill: response.prefill,
tokens: response.tokens,
@ -227,7 +230,7 @@ async fn generate_internal(
});
Some(Details {
finish_reason: FinishReason::from(response.generated_text.finish_reason),
finish_reason: response.generated_text.finish_reason,
generated_tokens: response.generated_text.generated_tokens,
prefill: response.prefill,
tokens: response.tokens,
@ -468,7 +471,7 @@ async fn generate_stream_internal(
// Token details
let details = match details {
true => Some(StreamDetails {
finish_reason: FinishReason::from(generated_text.finish_reason),
finish_reason: generated_text.finish_reason,
generated_tokens: generated_text.generated_tokens,
seed: generated_text.seed,
}),
@ -1372,21 +1375,20 @@ pub(crate) struct ComputeType(String);
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
master_shard_uds_path: String,
model_info: HubModelInfo,
shard_info: ShardInfo,
compat_return_full_text: bool,
max_concurrent_requests: usize,
max_best_of: usize,
max_stop_sequences: usize,
max_top_n_tokens: u32,
max_input_length: usize,
max_input_tokens: usize,
max_total_tokens: usize,
waiting_served_ratio: f32,
max_batch_prefill_tokens: u32,
max_batch_total_tokens: u32,
max_batch_total_tokens: Option<u32>,
max_waiting_tokens: usize,
max_batch_size: Option<usize>,
client: ShardedClient,
tokenizer: Option<Tokenizer>,
config: Option<Config>,
validation_workers: usize,
@ -1400,7 +1402,7 @@ pub async fn run(
messages_api_enabled: bool,
grammar_support: bool,
max_client_batch_size: usize,
) -> Result<(), axum::BoxError> {
) -> Result<(), WebServerError> {
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
@ -1470,6 +1472,141 @@ pub async fn run(
struct ApiDoc;
// Create state
// Open connection, get model info and warmup
let (scheduler, health_ext, shard_info, max_batch_total_tokens): (
Arc<dyn Scheduler + Send + Sync>,
HealthCheck,
ShardInfo,
u32,
) = {
// Helper function to check both v2 and v3
let check_max_batch_total_tokens = |max_supported_batch_total_tokens: Option<u32>| {
match max_supported_batch_total_tokens {
// Older models do not support automatic max-batch-total-tokens
None => {
let max_batch_total_tokens = max_batch_total_tokens.unwrap_or(
16000.max((max_total_tokens as u32).max(max_batch_prefill_tokens)),
);
tracing::warn!("Model does not support automatic max batch total tokens");
Ok(max_batch_total_tokens)
}
// Flash attention models return their max supported total tokens
Some(max_supported_batch_total_tokens) => {
// Warn if user added his own max-batch-total-tokens as we will ignore it
if max_batch_total_tokens.is_some() {
tracing::warn!(
"`--max-batch-total-tokens` is deprecated for Flash \
Attention models."
);
tracing::warn!(
"Inferred max batch total tokens: {max_supported_batch_total_tokens}"
);
}
if max_total_tokens as u32 > max_supported_batch_total_tokens {
return Err(WebServerError::NotEnoughMemory(max_total_tokens));
}
Ok(max_supported_batch_total_tokens)
}
}
};
let generation_health = Arc::new(AtomicBool::new(false));
match v3::ShardedClient::connect_uds(master_shard_uds_path.clone()).await {
Ok(mut sharded_client) => {
// server is running on v3
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(WebServerError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_batch_total_tokens = check_max_batch_total_tokens(
sharded_client
.warmup(
max_input_tokens as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_size,
)
.await
.map_err(WebServerError::Warmup)?,
)?;
let health_ext =
HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
let scheduler = Arc::new(SchedulerV3::new(
sharded_client,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
shard_info.requires_padding,
shard_info.window_size,
shard_info.speculate,
generation_health,
));
tracing::info!("Using scheduler V3");
(scheduler, health_ext, shard_info, max_batch_total_tokens)
}
Err(_) => {
let mut sharded_client = v2::ShardedClient::connect_uds(master_shard_uds_path)
.await
.map_err(WebServerError::Connection)?;
// server is running on v2
// Clear the cache; useful if the webserver rebooted
sharded_client
.clear_cache(None)
.await
.map_err(WebServerError::Cache)?;
// Get info from the shard
let shard_info = sharded_client.info().await.map_err(WebServerError::Info)?;
// Warmup model
tracing::info!("Warming up model");
let max_batch_total_tokens = check_max_batch_total_tokens(
sharded_client
.warmup(
max_input_tokens as u32,
max_batch_prefill_tokens,
max_total_tokens as u32,
max_batch_size,
)
.await
.map_err(WebServerError::Warmup)?,
)?;
let health_ext =
HealthCheck::new(Arc::new(sharded_client.clone()), generation_health.clone());
let scheduler = Arc::new(SchedulerV2::new(
sharded_client,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
shard_info.requires_padding,
shard_info.window_size,
shard_info.speculate,
generation_health,
));
tracing::info!("Using scheduler V2");
(scheduler, health_ext, shard_info, max_batch_total_tokens)
}
}
};
tracing::info!("Setting max batch total tokens to {max_batch_total_tokens}");
let validation = Validation::new(
validation_workers,
tokenizer,
@ -1477,25 +1614,15 @@ pub async fn run(
max_best_of,
max_stop_sequences,
max_top_n_tokens,
max_input_length,
max_input_tokens,
max_total_tokens,
grammar_support,
);
let generation_health = Arc::new(AtomicBool::new(false));
let health_ext = Health::new(client.clone(), generation_health.clone());
let infer = Infer::new(
client,
scheduler,
validation,
waiting_served_ratio,
max_batch_prefill_tokens,
max_batch_total_tokens,
max_waiting_tokens,
max_batch_size,
max_concurrent_requests,
shard_info.requires_padding,
shard_info.window_size,
shard_info.speculate,
generation_health,
tokenizer_config,
processor_config,
);
@ -1514,7 +1641,7 @@ pub async fn run(
// Input Length buckets
let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
let input_length_buckets: Vec<f64> = (0..100)
.map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
.map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
.collect();
// Generated tokens buckets
let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
@ -1568,7 +1695,7 @@ pub async fn run(
max_concurrent_requests,
max_best_of,
max_stop_sequences,
max_input_length,
max_input_tokens,
max_total_tokens,
waiting_served_ratio,
max_batch_total_tokens,
@ -1664,6 +1791,8 @@ pub async fn run(
.layer(OtelAxumLayer::default())
.layer(cors_layer);
tracing::info!("Connected");
if ngrok {
#[cfg(feature = "ngrok")]
{
@ -1686,7 +1815,8 @@ pub async fn run(
let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
axum::serve(listener, app)
.with_graceful_shutdown(shutdown_signal())
.await?;
.await
.map_err(|err| WebServerError::Axum(Box::new(err)))?;
}
Ok(())
}
@ -1719,17 +1849,6 @@ async fn shutdown_signal() {
opentelemetry::global::shutdown_tracer_provider();
}
impl From<i32> for FinishReason {
fn from(finish_reason: i32) -> Self {
let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
match finish_reason {
text_generation_client::FinishReason::Length => FinishReason::Length,
text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
}
}
}
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
fn from(err: InferError) -> Self {
@ -1762,3 +1881,19 @@ impl From<InferError> for Event {
.unwrap()
}
}
#[derive(Debug, Error)]
pub enum WebServerError {
#[error("Unable to connect to the Python model shards: {0}")]
Connection(ClientError),
#[error("Unable to clear the Python model shards cache: {0}")]
Cache(ClientError),
#[error("Unable to get the Python model shards info: {0}")]
Info(ClientError),
#[error("Unable to warmup the Python model shards: {0}")]
Warmup(ClientError),
#[error("Not enough memory to handle `max_total_tokens={0}`")]
NotEnoughMemory(usize),
#[error("Axum error: {0}")]
Axum(#[from] axum::BoxError),
}

View File

@ -1,20 +1,16 @@
use crate::config::Config;
/// Payload validation logic
use crate::config::Config;
use crate::validation::ValidationError::{BestOfSampling, BestOfSeed, EmptyInput};
use crate::{GenerateParameters, GenerateRequest, GrammarType};
use base64::{engine::general_purpose::STANDARD, Engine};
use image::{io::Reader as ImageReader, ImageFormat};
use jsonschema::{Draft, JSONSchema};
use rand::{thread_rng, Rng};
use serde_json::Value;
use std::io::Cursor;
use text_generation_client::{
Chunk, GrammarType as ProtoGrammarType, Image, InputChunk, NextTokenChooserParameters,
StoppingCriteriaParameters,
};
use text_generation_client::{Chunk, Image, InputChunk};
use thiserror::Error;
use tokenizers::tokenizer::Tokenizer;
// use tokenizers::TruncationDirection;
use base64::{engine::general_purpose::STANDARD, Engine};
use image::{io::Reader as ImageReader, ImageFormat};
use tokio::sync::mpsc;
use tokio::sync::oneshot;
use tracing::{instrument, Span};
@ -173,10 +169,6 @@ impl Validation {
// Validate MaxNewTokens
if (input_length as u32 + max_new_tokens) > self.max_total_tokens as u32 {
input_length = input_length.saturating_sub(max_new_tokens as usize);
// return Err(ValidationError::MaxNewTokens(
// self.max_total_tokens - self.max_input_length,
// max_new_tokens,
// ));
}
Ok((
@ -327,13 +319,13 @@ impl Validation {
// compiler and use that to build the FSM here.
// Validate grammar and unpack the grammar and type for the proto message
let (grammar, grammar_type) = match grammar {
let grammar = match grammar {
Some(grammar) => {
// Ensure that grammar is not set if it's not supported
if self.disable_grammar_support {
return Err(ValidationError::Grammar);
}
match grammar {
let valid_grammar = match grammar {
GrammarType::Json(json) => {
let json = match json {
// if value is a string, we need to parse it again to make sure its
@ -350,20 +342,20 @@ impl Validation {
.compile(&json)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string()))?;
(
// Serialize json to string
ValidGrammar::Json(
serde_json::to_string(&json)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string()))?,
ProtoGrammarType::Json.into(),
)
}
GrammarType::Regex(regex) => (regex, ProtoGrammarType::Regex.into()),
GrammarType::Regex(regex) => ValidGrammar::Regex(regex),
};
Some(valid_grammar)
}
}
None => (String::new(), ProtoGrammarType::None.into()),
None => None,
};
let parameters = NextTokenChooserParameters {
let parameters = ValidParameters {
temperature,
repetition_penalty,
frequency_penalty,
@ -374,9 +366,8 @@ impl Validation {
seed,
watermark,
grammar,
grammar_type,
};
let stopping_parameters = StoppingCriteriaParameters {
let stopping_parameters = ValidStoppingParameters {
max_new_tokens,
stop_sequences,
ignore_eos_token: false,
@ -458,6 +449,7 @@ fn format_from_mimetype(mimetype: &str) -> Option<ImageFormat> {
_ => None,
}
}
fn format_to_mimetype(format: ImageFormat) -> String {
match format {
ImageFormat::Png => "image/png",
@ -636,14 +628,55 @@ type TokenizerRequest = (
Span,
);
#[derive(Debug, Clone)]
pub(crate) enum ValidGrammar {
Json(String),
Regex(String),
}
#[derive(Debug, Clone)]
pub(crate) struct ValidParameters {
/// / exponential scaling output probability distribution
pub temperature: f32,
/// / restricting to the k highest probability elements
pub top_k: u32,
/// / restricting to top tokens summing to prob_cut_off <= prob_cut_off
pub top_p: f32,
/// / restricting to top tokens summing to prob_cut_off <= prob_cut_off
pub typical_p: f32,
/// / apply sampling on the logits
pub do_sample: bool,
/// / random seed for sampling
pub seed: u64,
/// / repetition penalty
pub repetition_penalty: f32,
/// / frequency penalty
pub frequency_penalty: f32,
/// / token watermarking using "A Watermark for Large Language Models"
pub watermark: bool,
/// / grammar (applied if not empty)
pub grammar: Option<ValidGrammar>,
}
#[derive(Debug, Clone)]
pub(crate) struct ValidStoppingParameters {
/// / Maximum number of generated tokens
pub max_new_tokens: u32,
/// / Optional stopping sequences
pub stop_sequences: Vec<String>,
/// / Ignore end of sequence token
/// / used for benchmarking
pub ignore_eos_token: bool,
}
#[derive(Debug, Clone)]
pub(crate) struct ValidGenerateRequest {
pub inputs: Vec<InputChunk>,
pub input_length: u32,
pub truncate: u32,
pub decoder_input_details: bool,
pub parameters: NextTokenChooserParameters,
pub stopping_parameters: StoppingCriteriaParameters,
pub parameters: ValidParameters,
pub stopping_parameters: ValidStoppingParameters,
pub top_n_tokens: u32,
}

View File

@ -12,8 +12,8 @@ gen-server:
# Compile protos
pip install grpcio-tools==1.51.1 mypy-protobuf==3.4.0 'types-protobuf>=3.20.4' --no-cache-dir
mkdir text_generation_server/pb || true
python -m grpc_tools.protoc -I../proto --python_out=text_generation_server/pb \
--grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/generate.proto
python -m grpc_tools.protoc -I../proto/v3 --python_out=text_generation_server/pb \
--grpc_python_out=text_generation_server/pb --mypy_out=text_generation_server/pb ../proto/v3/generate.proto
find text_generation_server/pb/ -type f -name "*.py" -print0 -exec sed -i -e 's/^\(import.*pb2\)/from . \1/g' {} \;
touch text_generation_server/pb/__init__.py