refactor
This commit is contained in:
parent
cb37c551ab
commit
770975fa81
|
@ -5,7 +5,7 @@ from copy import copy
|
|||
from transformers import AutoTokenizer
|
||||
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.models.transformers_causal_lm import CausalLMBatch
|
||||
from text_generation_server.utils import weight_hub_files, download_weights
|
||||
from text_generation_server.models.bloom import BloomCausalLMBatch, BLOOMSharded
|
||||
|
||||
|
|
|
@ -5,7 +5,10 @@ from copy import copy
|
|||
from transformers import AutoTokenizer
|
||||
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatch
|
||||
from text_generation_server.models.transformers_causal_lm import (
|
||||
TransformersCausalLM,
|
||||
CausalLMBatch,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import pytest
|
||||
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.models.transformers_causal_lm import CausalLMBatch
|
||||
from text_generation_server.models.santacoder import SantaCoder
|
||||
|
||||
|
||||
|
|
|
@ -8,11 +8,13 @@ from transformers.models.auto import modeling_auto
|
|||
from huggingface_hub import hf_hub_download, HfApi
|
||||
from typing import Optional, List
|
||||
from pathlib import Path
|
||||
|
||||
import transformers
|
||||
from text_generation_server.utils.speculate import get_speculate, set_speculate
|
||||
from text_generation_server.models.model import Model
|
||||
from text_generation_server.models.causal_lm import CausalLM
|
||||
from text_generation_server.models.causal_lm_ragged import CausalLMRagged
|
||||
from text_generation_server.models.transformers_causal_lm import TransformersCausalLM
|
||||
from text_generation_server.models.transformers_flash_causal_lm import (
|
||||
TransformersFlashCausalLM,
|
||||
)
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||
from text_generation_server.models.bloom import BLOOMSharded
|
||||
from text_generation_server.models.mpt import MPTSharded
|
||||
|
@ -25,6 +27,8 @@ from text_generation_server.models.t5 import T5Sharded
|
|||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
from text_generation_server.models.phi import Phi
|
||||
|
||||
from text_generation_server.models.globals import USE_CUSTOM_MODELING
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
|
@ -289,6 +293,31 @@ def get_model(
|
|||
)
|
||||
model_type = config_dict.get("model_type", None)
|
||||
|
||||
transformers_causal_lm_class = TransformersCausalLM
|
||||
if (
|
||||
not USE_CUSTOM_MODELING
|
||||
and model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
|
||||
):
|
||||
logger.info(
|
||||
"TGI's flash enabled models could either not be loaded or are disabled, using Transformers fallback."
|
||||
)
|
||||
transformers_model_class = getattr(
|
||||
transformers, modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[model_type]
|
||||
)
|
||||
|
||||
if (
|
||||
transformers_model_class._supports_flash_attn_2
|
||||
and transformers_model_class._supports_cache_class
|
||||
):
|
||||
logger.info(
|
||||
f"Transformers' {model_type} implementation supports custom cache and flash/paged attention. Using TransformersFlashCausalLM with ragged tensors (single dimension for batch and sequence length)."
|
||||
)
|
||||
transformers_causal_lm_class = TransformersFlashCausalLM
|
||||
else:
|
||||
logger.info(
|
||||
f"Transformers' {model_type} implementation supports custom cache and flash/paged attention. Using TransformersCausalLM with classic tensors with padding (two dimensions for batch size and sequence length)."
|
||||
)
|
||||
|
||||
speculator = None
|
||||
if "medusa_num_heads" in config_dict:
|
||||
medusa_model_id = model_id
|
||||
|
@ -450,7 +479,7 @@ def get_model(
|
|||
or model_type == GPT2
|
||||
and model_id.startswith("bigcode/")
|
||||
):
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashSantacoderSharded(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -492,7 +521,7 @@ def get_model(
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == GPT2:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
try:
|
||||
return FlashGPT2(
|
||||
model_id,
|
||||
|
@ -505,7 +534,8 @@ def get_model(
|
|||
except RuntimeError as e:
|
||||
# Lots of legacy models with various weight names.
|
||||
logger.warning(f"Couldn't load flash gpt2 variant: {e}")
|
||||
return CausalLM(
|
||||
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -516,7 +546,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -525,7 +555,7 @@ def get_model(
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == GPT_NEOX:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashNeoXSharded(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -544,7 +574,7 @@ def get_model(
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -554,7 +584,7 @@ def get_model(
|
|||
)
|
||||
|
||||
elif model_type == PHI:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashPhi(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -564,7 +594,7 @@ def get_model(
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -574,7 +604,7 @@ def get_model(
|
|||
)
|
||||
|
||||
elif model_type == "phi-msft":
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
raise NotImplementedError(
|
||||
"Legacy phi-msft is not supported with Flash Attention"
|
||||
)
|
||||
|
@ -589,7 +619,7 @@ def get_model(
|
|||
)
|
||||
|
||||
elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
|
||||
if FLASH_ATTENTION and False:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashLlama(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -602,8 +632,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
|
||||
else:
|
||||
logger.info("LOADING CAUSALLM!!!!!!!!!!!!!!!!!!")
|
||||
return CausalLMRagged(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -612,7 +641,7 @@ def get_model(
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
if model_type == GEMMA:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashGemma(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -624,7 +653,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -634,7 +663,7 @@ def get_model(
|
|||
)
|
||||
|
||||
if model_type == COHERE:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashCohere(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -646,7 +675,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -656,7 +685,7 @@ def get_model(
|
|||
)
|
||||
|
||||
if model_type == DBRX:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashDbrx(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -668,7 +697,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -679,7 +708,7 @@ def get_model(
|
|||
|
||||
if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
|
||||
if sharded:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
if config_dict.get("alibi", False):
|
||||
raise NotImplementedError("sharded is not supported for this model")
|
||||
return FlashRWSharded(
|
||||
|
@ -712,7 +741,7 @@ def get_model(
|
|||
)
|
||||
|
||||
if model_type == MISTRAL:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashMistral(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -724,7 +753,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -734,7 +763,7 @@ def get_model(
|
|||
)
|
||||
|
||||
if model_type == MIXTRAL:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashMixtral(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -746,7 +775,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -756,7 +785,7 @@ def get_model(
|
|||
)
|
||||
|
||||
if model_type == STARCODER2:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashStarcoder2(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -769,7 +798,7 @@ def get_model(
|
|||
FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
|
||||
)
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -779,7 +808,7 @@ def get_model(
|
|||
)
|
||||
|
||||
if model_type == QWEN2:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return FlashQwen2(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -790,7 +819,7 @@ def get_model(
|
|||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
|
||||
else:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -819,7 +848,7 @@ def get_model(
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
if model_type == IDEFICS:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return IDEFICSSharded(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -831,7 +860,7 @@ def get_model(
|
|||
else:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
|
||||
if model_type == IDEFICS2:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return Idefics2(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -843,7 +872,7 @@ def get_model(
|
|||
else:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
|
||||
if model_type == "paligemma":
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return PaliGemma(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -856,7 +885,7 @@ def get_model(
|
|||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
|
||||
|
||||
if model_type == LLAVA_NEXT:
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and USE_CUSTOM_MODELING:
|
||||
return LlavaNext(
|
||||
model_id,
|
||||
revision,
|
||||
|
@ -883,7 +912,7 @@ def get_model(
|
|||
elif quantize == "exl2":
|
||||
raise NotImplementedError("exl2 quantization is not supported for AutoModel")
|
||||
if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
@ -904,7 +933,7 @@ def get_model(
|
|||
auto_map = config_dict.get("auto_map", None)
|
||||
if trust_remote_code and auto_map is not None:
|
||||
if "AutoModelForCausalLM" in auto_map.keys():
|
||||
return CausalLM(
|
||||
return transformers_causal_lm_class(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
|
|
|
@ -12,8 +12,8 @@ from transformers import (
|
|||
from text_generation_server.models.custom_modeling.bloom_modeling import (
|
||||
BloomForCausalLM,
|
||||
)
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
from text_generation_server.models.transformers_causal_lm import CausalLMBatch
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
|
@ -36,7 +36,7 @@ class BloomCausalLMBatch(CausalLMBatch):
|
|||
return batch
|
||||
|
||||
|
||||
class BLOOMSharded(CausalLM):
|
||||
class BLOOMSharded(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -89,7 +89,7 @@ class BLOOMSharded(CausalLM):
|
|||
model = BloomForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -1,787 +0,0 @@
|
|||
import torch
|
||||
import time
|
||||
|
||||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
|
||||
from typing import Optional, Tuple, List, Type, Dict
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.utils.chunks import concat_text_chunks
|
||||
from text_generation_server.utils.tokens import batch_top_tokens
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
Tokens,
|
||||
Generation,
|
||||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class CausalLMBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
requests_idx_mapping: Dict[int, int]
|
||||
|
||||
# Decoder values
|
||||
input_ids: torch.Tensor
|
||||
attention_mask: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
past_key_values: Optional[List[Tuple]]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[torch.Tensor]
|
||||
|
||||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
prefix_offsets: List[int]
|
||||
read_offsets: List[int]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
stopping_criterias: List[StoppingCriteria]
|
||||
top_n_tokens: List[int]
|
||||
top_n_tokens_tensor: torch.Tensor
|
||||
|
||||
# Metadata used for padding
|
||||
max_input_length: int
|
||||
padding_right_offset: int
|
||||
|
||||
# Maximum number of tokens this batch will grow to
|
||||
max_tokens: int
|
||||
|
||||
# Past metadata
|
||||
keys_head_dim_last: bool = True
|
||||
|
||||
def to_pb(self) -> generate_pb2.CachedBatch:
|
||||
return generate_pb2.CachedBatch(
|
||||
id=self.batch_id,
|
||||
request_ids=[r.id for r in self.requests],
|
||||
size=len(self),
|
||||
max_tokens=self.max_tokens,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls,
|
||||
pb: generate_pb2.Batch,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
) -> "CausalLMBatch":
|
||||
inputs = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
top_n_tokens = []
|
||||
prefix_offsets = []
|
||||
read_offsets = []
|
||||
requests_idx_mapping = {}
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
padding_right_offset = 0
|
||||
max_decode_tokens = 0
|
||||
for i, r in enumerate(pb.requests):
|
||||
requests_idx_mapping[r.id] = i
|
||||
inputs.append(concat_text_chunks(r.input_chunks.chunks))
|
||||
|
||||
next_token_choosers.append(
|
||||
NextTokenChooser.from_pb(r.parameters, device, tokenizer)
|
||||
)
|
||||
stopping_criteria = StoppingCriteria.from_pb(
|
||||
r.stopping_parameters, tokenizer
|
||||
)
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
top_n_tokens.append(r.top_n_tokens)
|
||||
max_truncation = max(max_truncation, r.truncate)
|
||||
max_decode_tokens += stopping_criteria.max_new_tokens
|
||||
padding_right_offset = max(
|
||||
padding_right_offset, stopping_criteria.max_new_tokens
|
||||
)
|
||||
|
||||
tokenized_inputs = tokenizer(
|
||||
inputs,
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
return_token_type_ids=False,
|
||||
truncation=True,
|
||||
max_length=max_truncation,
|
||||
).to(device)
|
||||
for _ in pb.requests:
|
||||
input_len = tokenized_inputs["input_ids"].shape[1]
|
||||
prefix_offsets.append(input_len - 5)
|
||||
read_offsets.append(input_len)
|
||||
|
||||
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
||||
max_input_length = input_lengths.max()
|
||||
|
||||
input_ids = tokenized_inputs["input_ids"]
|
||||
# Allocate maximum attention_mask
|
||||
attention_mask = input_ids.new_zeros(
|
||||
(pb.size, max_input_length + padding_right_offset)
|
||||
)
|
||||
# Copy tokenizer attention_mask into fully allocated attention_mask
|
||||
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
|
||||
|
||||
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
|
||||
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
|
||||
top_n_tokens_tensor = torch.tensor(
|
||||
top_n_tokens, device=device, dtype=torch.int64
|
||||
)
|
||||
|
||||
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=None,
|
||||
all_input_ids=list(all_input_ids),
|
||||
input_lengths=input_lengths.tolist(),
|
||||
prefix_offsets=prefix_offsets,
|
||||
read_offsets=read_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
top_n_tokens=top_n_tokens,
|
||||
top_n_tokens_tensor=top_n_tokens_tensor,
|
||||
max_input_length=max_input_length.item(),
|
||||
padding_right_offset=padding_right_offset,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("filter")
|
||||
def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]:
|
||||
if len(request_ids) == 0:
|
||||
raise ValueError("Batch must have at least one request")
|
||||
if len(request_ids) == len(self):
|
||||
return self
|
||||
|
||||
keep_indices = []
|
||||
|
||||
# New values after filtering
|
||||
requests_idx_mapping = {}
|
||||
requests = []
|
||||
input_lengths = []
|
||||
prefix_offsets = []
|
||||
read_offsets = []
|
||||
all_input_ids = []
|
||||
max_input_length = 0
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
top_n_tokens = []
|
||||
|
||||
total_remaining_decode_tokens = 0
|
||||
new_padding_right_offset = 0
|
||||
|
||||
for i, request_id in enumerate(request_ids):
|
||||
idx = self.requests_idx_mapping[request_id]
|
||||
requests_idx_mapping[request_id] = i
|
||||
keep_indices.append(idx)
|
||||
|
||||
requests.append(self.requests[idx])
|
||||
prefix_offsets.append(self.prefix_offsets[idx])
|
||||
read_offsets.append(self.read_offsets[idx])
|
||||
all_input_ids.append(self.all_input_ids[idx])
|
||||
|
||||
request_input_length = self.input_lengths[idx]
|
||||
input_lengths.append(request_input_length)
|
||||
max_input_length = max(max_input_length, request_input_length)
|
||||
|
||||
next_token_choosers.append(self.next_token_choosers[idx])
|
||||
stopping_criteria = self.stopping_criterias[idx]
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
top_n_tokens.append(self.top_n_tokens[idx])
|
||||
remaining_decode_tokens = (
|
||||
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
|
||||
)
|
||||
total_remaining_decode_tokens += remaining_decode_tokens
|
||||
new_padding_right_offset = max(
|
||||
new_padding_right_offset, remaining_decode_tokens
|
||||
)
|
||||
|
||||
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
|
||||
input_ids = self.input_ids[keep_indices]
|
||||
position_ids = self.position_ids[keep_indices]
|
||||
self.attention_mask = self.attention_mask[
|
||||
keep_indices,
|
||||
-(self.padding_right_offset + max_input_length) : (
|
||||
self.attention_mask.shape[1] - self.padding_right_offset
|
||||
)
|
||||
+ new_padding_right_offset,
|
||||
]
|
||||
|
||||
# Ensure that past_key_values tensors can be updated in-place
|
||||
if type(self.past_key_values[0]) == tuple:
|
||||
self.past_key_values = [list(layer) for layer in self.past_key_values]
|
||||
|
||||
# Update tensors in-place to allow incremental garbage collection
|
||||
past_kv_length = max_input_length - 1
|
||||
for layer in self.past_key_values:
|
||||
past_keys, past_values = layer
|
||||
if len(past_keys.shape) == 3:
|
||||
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
|
||||
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
|
||||
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
|
||||
if self.keys_head_dim_last:
|
||||
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
|
||||
else:
|
||||
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
|
||||
del past_keys
|
||||
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
|
||||
del past_values
|
||||
|
||||
top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
|
||||
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
|
||||
|
||||
self.requests = requests
|
||||
self.requests_idx_mapping = requests_idx_mapping
|
||||
self.input_ids = input_ids
|
||||
self.position_ids = position_ids
|
||||
self.all_input_ids = all_input_ids
|
||||
self.input_lengths = input_lengths
|
||||
self.prefix_offsets = prefix_offsets
|
||||
self.read_offsets = read_offsets
|
||||
self.next_token_choosers = next_token_choosers
|
||||
self.stopping_criterias = stopping_criterias
|
||||
self.top_n_tokens = top_n_tokens
|
||||
self.top_n_tokens_tensor = top_n_tokens_tensor
|
||||
self.max_input_length = max_input_length
|
||||
self.padding_right_offset = new_padding_right_offset
|
||||
self.max_tokens = max_tokens
|
||||
|
||||
return self
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
||||
# Used for padding
|
||||
total_batch_size = 0
|
||||
max_input_length = 0
|
||||
padding_right_offset = 0
|
||||
for batch in batches:
|
||||
total_batch_size += len(batch)
|
||||
max_input_length = max(max_input_length, batch.max_input_length)
|
||||
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
|
||||
|
||||
# Batch attributes
|
||||
requests = []
|
||||
requests_idx_mapping = {}
|
||||
input_lengths = []
|
||||
prefix_offsets = []
|
||||
read_offsets = []
|
||||
all_input_ids = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
top_n_tokens = []
|
||||
max_tokens = 0
|
||||
|
||||
# Batch tensors
|
||||
input_ids = None
|
||||
attention_mask = None
|
||||
position_ids = None
|
||||
past_key_values = []
|
||||
top_n_tokens_tensor = None
|
||||
|
||||
# Used for slicing correctly inside the tensors
|
||||
# Equivalent to a cumsum on batch sizes
|
||||
start_index = 0
|
||||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
prefix_offsets.extend(batch.prefix_offsets)
|
||||
read_offsets.extend(batch.read_offsets)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
top_n_tokens.extend(batch.top_n_tokens)
|
||||
|
||||
if i == 0:
|
||||
requests_idx_mapping = batch.requests_idx_mapping
|
||||
else:
|
||||
# We need to offset the mapping for each batch by the cumulative batch size
|
||||
for k, v in batch.requests_idx_mapping.items():
|
||||
requests_idx_mapping[k] = v + start_index
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + len(batch)
|
||||
|
||||
# We only concatenate batches that did at least one step
|
||||
if batch.past_key_values is None:
|
||||
raise ValueError("only concatenate prefilled batches")
|
||||
|
||||
# Create empty tensor
|
||||
# input_ids is always of shape [batch_size, 1]
|
||||
# We do not need to pad it
|
||||
if input_ids is None:
|
||||
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
|
||||
# Copy to correct indices
|
||||
input_ids[start_index:end_index] = batch.input_ids
|
||||
|
||||
# Create padded tensor
|
||||
if attention_mask is None:
|
||||
attention_mask = batch.attention_mask.new_zeros(
|
||||
(total_batch_size, max_input_length + padding_right_offset),
|
||||
)
|
||||
|
||||
if top_n_tokens_tensor is None:
|
||||
top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
|
||||
total_batch_size,
|
||||
)
|
||||
top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
|
||||
|
||||
# We need to slice the attention mask to remove padding from previous steps
|
||||
# and to remove unused allocated space
|
||||
left_offset = max_input_length - batch.max_input_length
|
||||
batch_left_offset = (
|
||||
batch.attention_mask.shape[1]
|
||||
- batch.max_input_length
|
||||
- batch.padding_right_offset
|
||||
)
|
||||
attention_mask[
|
||||
start_index:end_index,
|
||||
left_offset:-padding_right_offset,
|
||||
] = batch.attention_mask[
|
||||
:,
|
||||
batch_left_offset : -batch.padding_right_offset,
|
||||
]
|
||||
|
||||
# Create empty tensor
|
||||
# position_ids is always of shape [batch_size, 1]
|
||||
if position_ids is None:
|
||||
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
|
||||
position_ids[start_index:end_index] = batch.position_ids
|
||||
|
||||
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
|
||||
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
|
||||
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
|
||||
# And ensure that we can update tensors in-place
|
||||
if type(batch.past_key_values[0]) == tuple:
|
||||
batch.past_key_values = [
|
||||
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
|
||||
for layer in batch.past_key_values
|
||||
]
|
||||
elif len(batch.past_key_values[0][0].shape) == 3:
|
||||
for layer in batch.past_key_values:
|
||||
for k, t in enumerate(layer):
|
||||
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
|
||||
|
||||
# Add eventual padding tokens that were added while concatenating
|
||||
max_tokens += batch.max_tokens + (
|
||||
max_input_length - batch.max_input_length
|
||||
) * len(batch)
|
||||
|
||||
start_index = end_index
|
||||
|
||||
first_past_kvs = batches[0].past_key_values
|
||||
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
|
||||
|
||||
padded_past_values_shape = (
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
max_input_length - 1,
|
||||
head_dim,
|
||||
)
|
||||
|
||||
if batches[0].keys_head_dim_last:
|
||||
padded_past_keys_shape = padded_past_values_shape
|
||||
else:
|
||||
# seq_length is last for BLOOM
|
||||
padded_past_keys_shape = (
|
||||
total_batch_size,
|
||||
num_heads,
|
||||
head_dim,
|
||||
max_input_length - 1,
|
||||
)
|
||||
|
||||
# Iterate over attention layers
|
||||
# Concatenate past key values layer by layer to allow incremental garbage collection
|
||||
for j in range(len(first_past_kvs)):
|
||||
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
|
||||
start_index = 0
|
||||
for batch in batches:
|
||||
past_keys = batch.past_key_values[j][0]
|
||||
# Clear reference to the original tensor
|
||||
batch.past_key_values[j][0] = None
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + len(batch)
|
||||
# We slice the keys to remove the padding from previous batches
|
||||
past_seq_len = batch.max_input_length - 1
|
||||
if batch.keys_head_dim_last:
|
||||
padded_past_keys[start_index:end_index, :, -past_seq_len:, :] = (
|
||||
past_keys[:, :, -past_seq_len:, :]
|
||||
)
|
||||
else:
|
||||
# BLOOM case
|
||||
padded_past_keys[start_index:end_index, :, :, -past_seq_len:] = (
|
||||
past_keys[:, :, :, -past_seq_len:]
|
||||
)
|
||||
del past_keys
|
||||
|
||||
start_index = end_index
|
||||
|
||||
padded_past_values = first_past_kvs[j][1].new_zeros(
|
||||
padded_past_values_shape
|
||||
)
|
||||
start_index = 0
|
||||
for batch in batches:
|
||||
past_values = batch.past_key_values[j][1]
|
||||
# Clear reference to the original tensor
|
||||
batch.past_key_values[j][1] = None
|
||||
|
||||
# Slicing end index for this batch
|
||||
end_index = start_index + len(batch)
|
||||
# We slice the past values to remove the padding from previous batches
|
||||
past_seq_len = batch.max_input_length - 1
|
||||
padded_past_values[start_index:end_index, :, -past_seq_len:, :] = (
|
||||
past_values[:, :, -past_seq_len:, :]
|
||||
)
|
||||
del past_values
|
||||
|
||||
# Update values
|
||||
start_index = end_index
|
||||
|
||||
past_key_values.append([padded_past_keys, padded_past_values])
|
||||
|
||||
return cls(
|
||||
batch_id=batches[0].batch_id,
|
||||
requests=requests,
|
||||
requests_idx_mapping=requests_idx_mapping,
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
all_input_ids=all_input_ids,
|
||||
input_lengths=input_lengths,
|
||||
prefix_offsets=prefix_offsets,
|
||||
read_offsets=read_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
top_n_tokens=top_n_tokens,
|
||||
top_n_tokens_tensor=top_n_tokens_tensor,
|
||||
max_input_length=max_input_length,
|
||||
padding_right_offset=padding_right_offset,
|
||||
keys_head_dim_last=batches[0].keys_head_dim_last,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.requests)
|
||||
|
||||
|
||||
class CausalLM(Model):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
speculator: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
if speculator:
|
||||
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
if quantize:
|
||||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
device_map=(
|
||||
"auto"
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > 1
|
||||
else None
|
||||
),
|
||||
load_in_8bit=quantize == "bitsandbytes",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
if (
|
||||
torch.cuda.is_available()
|
||||
and torch.cuda.device_count() == 1
|
||||
and quantize != "bitsandbytes"
|
||||
):
|
||||
model = model.cuda()
|
||||
|
||||
if tokenizer.pad_token_id is None:
|
||||
if model.config.pad_token_id is not None:
|
||||
tokenizer.pad_token_id = model.config.pad_token_id
|
||||
elif model.config.eos_token_id is not None:
|
||||
tokenizer.pad_token_id = model.config.eos_token_id
|
||||
elif tokenizer.eos_token_id is not None:
|
||||
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||
else:
|
||||
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
|
||||
super(CausalLM, self).__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=True,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[CausalLMBatch]:
|
||||
return CausalLMBatch
|
||||
|
||||
def decode(self, generated_ids: List[int]) -> str:
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
) -> Tuple[
|
||||
torch.Tensor, Optional[torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]
|
||||
]:
|
||||
# Model Forward
|
||||
kwargs = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": True,
|
||||
"return_dict": True,
|
||||
}
|
||||
if self.has_position_ids:
|
||||
kwargs["position_ids"] = position_ids
|
||||
|
||||
outputs = self.model.forward(**kwargs)
|
||||
if isinstance(outputs, tuple):
|
||||
outputs, speculative_logits = outputs
|
||||
else:
|
||||
speculative_logits = None
|
||||
return outputs.logits, speculative_logits, outputs.past_key_values
|
||||
|
||||
@tracer.start_as_current_span("generate_token")
|
||||
def generate_token(
|
||||
self, batch: CausalLMBatch
|
||||
) -> Tuple[List[Generation], Optional[CausalLMBatch], Tuple[int, int]]:
|
||||
start = time.time_ns()
|
||||
# slice the attention mask to the correct shape
|
||||
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
|
||||
|
||||
logits, speculative_logits, past = self.forward(
|
||||
batch.input_ids,
|
||||
attention_mask,
|
||||
batch.position_ids,
|
||||
batch.past_key_values,
|
||||
)
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
stopped = True
|
||||
|
||||
# Speculation is not active for causal
|
||||
accepted_ids = torch.ones_like(batch.input_ids)[:, 0]
|
||||
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
|
||||
batch.top_n_tokens,
|
||||
batch.top_n_tokens_tensor,
|
||||
torch.log_softmax(logits[:, -1], -1),
|
||||
accepted_ids,
|
||||
)
|
||||
|
||||
start_decode = time.time_ns()
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.prefix_offsets,
|
||||
batch.read_offsets,
|
||||
logits,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
batch.top_n_tokens,
|
||||
batch_top_token_ids,
|
||||
batch_top_token_logprobs,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
prefix_offset,
|
||||
read_offset,
|
||||
logits,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
top_n_tokens,
|
||||
top_token_ids,
|
||||
top_token_logprobs,
|
||||
) in enumerate(iterator):
|
||||
# Select next token
|
||||
next_token_id, logprobs = next_token_chooser(
|
||||
all_input_ids.view(1, -1), logits[-1:, :]
|
||||
)
|
||||
|
||||
# Append next token to all tokens
|
||||
all_input_ids = torch.cat([all_input_ids, next_token_id])
|
||||
new_input_length = input_length + 1
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_text, prefix_offset, read_offset = self.decode_token(
|
||||
all_input_ids[:, 0], prefix_offset, read_offset
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
stop, reason = stopping_criteria(
|
||||
next_token_id_squeezed,
|
||||
next_token_text,
|
||||
)
|
||||
|
||||
if not stop:
|
||||
stopped = False
|
||||
|
||||
# Shard generations
|
||||
# All generations will be appended in the rust sharded client
|
||||
if i % self.world_size == self.rank:
|
||||
if stop:
|
||||
# Decode generated tokens
|
||||
output_text, _, _ = self.decode_token(
|
||||
all_input_ids[:, 0],
|
||||
prefix_offset=len(all_input_ids)
|
||||
- stopping_criteria.current_tokens
|
||||
- 1,
|
||||
read_offset=len(all_input_ids)
|
||||
- stopping_criteria.current_tokens,
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
# Get seed
|
||||
if isinstance(next_token_chooser.choice, Sampling):
|
||||
seed = next_token_chooser.choice.seed
|
||||
else:
|
||||
seed = None
|
||||
|
||||
generated_text = GeneratedText(
|
||||
output_text, stopping_criteria.current_tokens, reason, seed
|
||||
)
|
||||
else:
|
||||
generated_text = None
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
prefill_logprobs = [float("nan")] + torch.log_softmax(
|
||||
logits, -1
|
||||
).gather(1, all_input_ids[1:]).squeeze(1)[
|
||||
-new_input_length:-1
|
||||
].tolist()
|
||||
prefill_token_ids = all_input_ids[-new_input_length:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
prefill_tokens = Tokens(
|
||||
prefill_token_ids,
|
||||
prefill_logprobs,
|
||||
prefill_texts,
|
||||
is_special=[],
|
||||
)
|
||||
else:
|
||||
prefill_tokens = None
|
||||
|
||||
if top_n_tokens > 0:
|
||||
all_top_tokens = []
|
||||
for top_token_ids, top_token_logprobs in zip(
|
||||
top_token_ids, top_token_logprobs
|
||||
):
|
||||
toptoken_texts = self.tokenizer.batch_decode(
|
||||
top_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
special_toptokens = [
|
||||
token_id in self.all_special_ids
|
||||
for token_id in top_token_ids
|
||||
]
|
||||
top_tokens = Tokens(
|
||||
top_token_ids,
|
||||
top_token_logprobs,
|
||||
toptoken_texts,
|
||||
special_toptokens,
|
||||
)
|
||||
all_top_tokens.append(top_tokens)
|
||||
top_tokens = all_top_tokens
|
||||
else:
|
||||
top_tokens = None
|
||||
|
||||
generation = Generation(
|
||||
request.id,
|
||||
prefill_tokens,
|
||||
Tokens(
|
||||
[next_token_id_squeezed],
|
||||
[next_token_logprob],
|
||||
[next_token_text],
|
||||
[next_token_id_squeezed.item() in self.all_special_ids],
|
||||
),
|
||||
generated_text,
|
||||
top_tokens,
|
||||
)
|
||||
|
||||
generations.append(generation)
|
||||
|
||||
# Update values
|
||||
batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
|
||||
next_token_id_squeezed.item()
|
||||
)
|
||||
batch.input_ids[i, 0] = next_token_id
|
||||
batch.all_input_ids[i] = all_input_ids
|
||||
batch.input_lengths[i] = new_input_length
|
||||
batch.prefix_offsets[i] = prefix_offset
|
||||
batch.read_offsets[i] = read_offset
|
||||
batch.max_input_length = max(batch.max_input_length, new_input_length)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if stopped:
|
||||
forward_ns = start_decode - start
|
||||
decode_ns = time.time_ns() - start_decode
|
||||
return generations, None, (forward_ns, decode_ns)
|
||||
|
||||
# Slice unused values from prefill
|
||||
batch.input_ids = batch.input_ids[:, :1]
|
||||
|
||||
# Update attention_mask as we added a new token to input_ids
|
||||
batch.attention_mask[:, -batch.padding_right_offset] = 1
|
||||
# Decrease right offset
|
||||
batch.padding_right_offset -= 1
|
||||
|
||||
# Update position_ids
|
||||
batch.position_ids = batch.position_ids[:, -1:] + 1
|
||||
|
||||
# Update past key values
|
||||
batch.past_key_values = past
|
||||
|
||||
forward_ns = start_decode - start
|
||||
decode_ns = time.time_ns() - start_decode
|
||||
return generations, batch, (forward_ns, decode_ns)
|
|
@ -1,630 +0,0 @@
|
|||
import torch
|
||||
import time
|
||||
|
||||
from dataclasses import dataclass
|
||||
from opentelemetry import trace
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
|
||||
from typing import Optional, Tuple, List, Type, Dict
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.utils.chunks import concat_text_chunks
|
||||
from text_generation_server.utils.tokens import batch_top_tokens
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
Tokens,
|
||||
Generation,
|
||||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch
|
||||
|
||||
from text_generation_server.utils.import_utils import (
|
||||
empty_cache,
|
||||
synchronize,
|
||||
get_free_memory,
|
||||
)
|
||||
from text_generation_server.utils.speculate import get_speculate
|
||||
from text_generation_server.utils.dist import MEMORY_FRACTION
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
from transformers.cache_utils import PagedCache
|
||||
|
||||
from loguru import logger
|
||||
|
||||
# Why define it here?
|
||||
BLOCK_SIZE: int = 16
|
||||
|
||||
|
||||
class CausalLMRagged(Model):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
revision: Optional[str] = None,
|
||||
quantize: Optional[str] = None,
|
||||
speculator: Optional[str] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
trust_remote_code: bool = False,
|
||||
):
|
||||
if speculator:
|
||||
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda:0") # TODO felix: fix support for accelerate
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
if quantize:
|
||||
raise ValueError("quantization is not available on CPU")
|
||||
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
device_map=None,
|
||||
load_in_8bit=quantize == "bitsandbytes",
|
||||
trust_remote_code=trust_remote_code,
|
||||
attn_implementation="flash_attention_2",
|
||||
)
|
||||
if (
|
||||
torch.cuda.is_available()
|
||||
and torch.cuda.device_count() == 1
|
||||
and quantize != "bitsandbytes"
|
||||
):
|
||||
model = model.cuda()
|
||||
|
||||
self.kv_cache = []
|
||||
self.num_layers = len(model.model.layers)
|
||||
self.num_kv_heads = model.config.num_key_value_heads
|
||||
self.head_size = model.config.hidden_size // model.config.num_attention_heads
|
||||
|
||||
if tokenizer.pad_token_id is None:
|
||||
if model.config.pad_token_id is not None:
|
||||
tokenizer.pad_token_id = model.config.pad_token_id
|
||||
elif model.config.eos_token_id is not None:
|
||||
tokenizer.pad_token_id = model.config.eos_token_id
|
||||
elif tokenizer.eos_token_id is not None:
|
||||
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||
else:
|
||||
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
requires_padding=False,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def warmup(self, batch: FlashCausalLMBatch):
|
||||
# The warmup batch is the biggest batch we could ever receive
|
||||
empty_cache()
|
||||
|
||||
try:
|
||||
self.init_kv_cache(
|
||||
batch.num_blocks,
|
||||
self.num_layers,
|
||||
self.num_kv_heads,
|
||||
self.head_size,
|
||||
self.dtype,
|
||||
self.device,
|
||||
)
|
||||
max_bt = batch.max_blocks
|
||||
max_s = max_bt * BLOCK_SIZE
|
||||
|
||||
_, batch, _ = self.generate_token(batch)
|
||||
except torch.cuda.OutOfMemoryError as e:
|
||||
raise RuntimeError(
|
||||
f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
|
||||
f"You need to decrease `--max-batch-prefill-tokens`"
|
||||
) from e
|
||||
|
||||
synchronize(self.device)
|
||||
|
||||
# Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
|
||||
# Calculate the number of blocks that can be allocated with the free memory
|
||||
dtype_size = torch.tensor([], dtype=self.dtype).element_size()
|
||||
cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
|
||||
total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size
|
||||
|
||||
free_memory = get_free_memory(self.device, MEMORY_FRACTION)
|
||||
batch_num_blocks = batch.num_blocks if batch is not None else 0
|
||||
|
||||
num_blocks = (
|
||||
# Leave 5% for some wiggle room
|
||||
int((free_memory * 0.95) // total_cache_size)
|
||||
# Add batch.num_blocks as we allocated it above, so it is included in the peak memory.
|
||||
+ batch_num_blocks
|
||||
)
|
||||
|
||||
del batch
|
||||
|
||||
self.init_kv_cache(
|
||||
num_blocks,
|
||||
self.num_layers,
|
||||
self.num_kv_heads,
|
||||
self.head_size,
|
||||
self.dtype,
|
||||
self.device,
|
||||
)
|
||||
|
||||
return int(num_blocks * BLOCK_SIZE)
|
||||
|
||||
def init_kv_cache(
|
||||
self,
|
||||
num_blocks: int,
|
||||
num_layers: int,
|
||||
num_heads: int,
|
||||
head_size: int,
|
||||
dtype: torch.dtype,
|
||||
device: torch.device,
|
||||
):
|
||||
self.kv_cache = []
|
||||
empty_cache()
|
||||
|
||||
element_size = torch.tensor([], dtype=dtype).element_size()
|
||||
if SYSTEM == "ipex" and device.type == "xpu":
|
||||
raise ValueError("Untested. Please open an issue")
|
||||
else:
|
||||
x = BLOCK_SIZE // element_size
|
||||
|
||||
if SYSTEM == "ipex" and device == torch.device("cpu"):
|
||||
raise ValueError("Untested. Please open an issue")
|
||||
|
||||
self.kv_cache = [
|
||||
(
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size // x, BLOCK_SIZE, x),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
torch.empty(
|
||||
(num_blocks, num_heads, head_size, BLOCK_SIZE),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
),
|
||||
)
|
||||
for _ in range(num_layers)
|
||||
]
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[FlashCausalLMBatch]:
|
||||
return FlashCausalLMBatch
|
||||
|
||||
def decode(self, generated_ids: List[int]) -> str:
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, batch: FlashCausalLMBatch
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
# NOTE: adapter_data: not supported
|
||||
|
||||
input_ids = batch.input_ids
|
||||
position_ids = batch.position_ids
|
||||
cu_seqlen_prefill = batch.cu_seqlen_prefill
|
||||
kv_cache = self.kv_cache
|
||||
block_tables = batch.block_tables_tensor
|
||||
slots = batch.slots[batch.slot_indices]
|
||||
input_lengths = batch.input_lengths_tensor
|
||||
max_s = batch.max_seqlen
|
||||
lm_head_indices = batch.prefill_head_indices
|
||||
|
||||
# TODO felix: support window attention
|
||||
# if cu_seqlen_prefill is None and self.max_past() is not None:
|
||||
# # In decode, not prefill, we're actually overwriting the KV-cache
|
||||
# # in a circular buffer mode.
|
||||
# # This makes sure the max_s for the decode pass is correct.
|
||||
# max_s = min(self.max_past(), max_s)
|
||||
|
||||
bs = input_ids.shape[0]
|
||||
|
||||
logits = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
past_key_values=PagedCache(),
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
input_lengths=input_lengths,
|
||||
max_s=max_s,
|
||||
prefill_cache_indices=batch.prefill_cache_indices,
|
||||
lm_head_indices=lm_head_indices,
|
||||
cache_position=False,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if lm_head_indices is not None:
|
||||
logits = logits[lm_head_indices]
|
||||
|
||||
if batch.prefill_cache_indices is not None:
|
||||
batch.prefill_cache_indices = None
|
||||
|
||||
speculative_logits = None
|
||||
|
||||
return logits, speculative_logits
|
||||
|
||||
@tracer.start_as_current_span("generate_token")
|
||||
def generate_token(
|
||||
self, batch: FlashCausalLMBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]:
|
||||
start = time.time_ns()
|
||||
prefill = batch.cu_seqlen_prefill is not None
|
||||
prefill_logprobs = batch.prefill_next_token_indices is not None
|
||||
|
||||
# Update adapter indices for speculative tokens (if present)
|
||||
# adapter_meta = batch.adapter_meta
|
||||
# if batch.speculative_ids is not None:
|
||||
# B, speculative_length = batch.speculative_ids.shape
|
||||
# new_length = speculative_length + 1
|
||||
# adapter_indices = (
|
||||
# adapter_meta.adapter_indices.unsqueeze(-1)
|
||||
# .expand(B, new_length)
|
||||
# .reshape(-1)
|
||||
# )
|
||||
# adapter_segments = adapter_meta.adapter_segments * new_length
|
||||
# adapter_meta = AdapterBatchMetadata(
|
||||
# adapter_indices=adapter_indices,
|
||||
# adapter_set=adapter_meta.adapter_set,
|
||||
# adapter_segments=adapter_segments,
|
||||
# segment_indices=adapter_meta.segment_indices,
|
||||
# )
|
||||
|
||||
# Assign pointers to adapter weights
|
||||
# TODO(travis): don't update this if indices haven't changed
|
||||
# adapter_data = AdapterBatchData.from_meta(
|
||||
# adapter_meta,
|
||||
# self.layer_to_adapter_weights,
|
||||
# prefill,
|
||||
# batch.prefill_head_indices,
|
||||
# )
|
||||
|
||||
logger.info(f"batch.input_ids {batch.input_ids}")
|
||||
out, speculative_logits = self.forward(batch)
|
||||
|
||||
logger.info(f"out {out.shape}")
|
||||
logger.info(f"speculative_logits {speculative_logits}")
|
||||
|
||||
if prefill:
|
||||
next_token_logits = (
|
||||
out[batch.prefill_next_token_indices] if prefill_logprobs else out
|
||||
)
|
||||
if speculative_logits is not None:
|
||||
speculative_logits = (
|
||||
speculative_logits[batch.prefill_next_token_indices]
|
||||
if prefill_logprobs
|
||||
else speculative_logits
|
||||
)
|
||||
# next_adapter_indices = batch.adapter_meta.adapter_indices.new_empty(
|
||||
# len(batch)
|
||||
# )
|
||||
|
||||
else:
|
||||
next_token_logits = out
|
||||
# next_adapter_indices = batch.adapter_meta.adapter_indices
|
||||
|
||||
speculate = get_speculate()
|
||||
(
|
||||
next_input_ids,
|
||||
next_token_logprobs,
|
||||
logprobs,
|
||||
accepted_ids,
|
||||
speculative_ids,
|
||||
) = batch.next_token_chooser(
|
||||
batch.all_input_ids_tensor[:, : batch.max_seqlen],
|
||||
next_token_logits,
|
||||
speculate,
|
||||
batch.speculative_ids,
|
||||
speculative_logits,
|
||||
)
|
||||
|
||||
batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
|
||||
batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids
|
||||
)
|
||||
|
||||
if prefill:
|
||||
if len(batch) > 1 and prefill_logprobs:
|
||||
# We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
|
||||
# When batch == 1, we will just use the batch.input_ids values directly
|
||||
prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
|
||||
|
||||
next_position_ids = batch.position_ids.new_empty(len(batch))
|
||||
batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
|
||||
# We do not need cu_seqlen_prefill anymore
|
||||
batch.cu_seqlen_prefill = None
|
||||
else:
|
||||
prefill_logprobs = None
|
||||
next_position_ids = batch.position_ids
|
||||
|
||||
# Cumulative length
|
||||
cumulative_length = 0
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
stopped = True
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids)
|
||||
|
||||
# We do two for loops as the first one can run completely asynchronously from the GPU while for the second
|
||||
# one, we need to first do a GPU <-> CPU sync
|
||||
# It is faster if we delay this sync for the maximum amount of time
|
||||
|
||||
# For each member of the batch
|
||||
index = 0
|
||||
for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator):
|
||||
# Indexing metadata
|
||||
start_index = cumulative_length
|
||||
end_index = cumulative_length + input_length
|
||||
|
||||
if prefill:
|
||||
# Indexing metadata
|
||||
out_start_index = batch.prefill_cu_outlens[i]
|
||||
out_end_index = batch.prefill_cu_outlens[i + 1]
|
||||
out_length = out_end_index - out_start_index
|
||||
|
||||
# Initialize position_ids
|
||||
# In decode, we do not need this as we can just increment position ids
|
||||
next_position_ids[i] = batch.position_ids[end_index - 1]
|
||||
|
||||
# Initialize adapter indices
|
||||
# In decode, we only have one token per row in the batch, so grab last index
|
||||
# next_adapter_indices[i] = batch.adapter_meta.adapter_indices[
|
||||
# end_index - 1
|
||||
# ]
|
||||
|
||||
# Used to gather prefill logprobs
|
||||
# Copy batch.input_ids to prefill_token_indices
|
||||
if prefill_logprobs:
|
||||
if len(batch) > 1:
|
||||
prefill_tokens_indices[out_start_index : out_end_index - 1] = (
|
||||
batch.input_ids[start_index + 1 : start_index + out_length]
|
||||
)
|
||||
else:
|
||||
# Set prefill_tokens_indices to the correct slice
|
||||
prefill_tokens_indices = batch.input_ids[
|
||||
start_index + 1 : start_index + out_length
|
||||
]
|
||||
|
||||
for j in range(n_accepted_ids):
|
||||
batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index]
|
||||
index += 1
|
||||
|
||||
cumulative_length += input_length
|
||||
|
||||
logger.info(f"batch.input_lengths_tensor {batch.input_lengths_tensor}")
|
||||
logger.info(f"accepted_ids {accepted_ids}")
|
||||
logger.info(f"batch.all_input_ids {batch.all_input_ids}")
|
||||
|
||||
# Update values
|
||||
batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
|
||||
batch.speculative_ids = speculative_ids
|
||||
batch.position_ids = next_position_ids + accepted_ids
|
||||
batch.input_lengths_tensor += accepted_ids
|
||||
batch.slot_indices += accepted_ids
|
||||
# batch.adapter_meta.adapter_indices = None
|
||||
|
||||
# if prefill:
|
||||
# # adjust segment lengths to account for all request lengths being 1 during decoding
|
||||
# adapter_segments, _ = find_segments(batch.adapter_meta.adapter_indices)
|
||||
# batch.adapter_meta.adapter_segments = torch.tensor(
|
||||
# adapter_segments,
|
||||
# dtype=torch.int32,
|
||||
# device=batch.adapter_meta.adapter_segments.device,
|
||||
# )
|
||||
|
||||
if prefill and prefill_logprobs:
|
||||
# Get prefill logprobs
|
||||
prefill_logprobs_tensor = torch.log_softmax(out, -1)
|
||||
prefill_logprobs = torch.gather(
|
||||
prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
|
||||
)
|
||||
# GPU <-> CPU sync
|
||||
prefill_logprobs = prefill_logprobs.view(-1).tolist()
|
||||
|
||||
# GPU <-> CPU sync
|
||||
next_token_logprobs = next_token_logprobs.tolist()
|
||||
next_token_ids = next_input_ids.tolist()
|
||||
accepted_ids = accepted_ids.tolist()
|
||||
start_decode = time.time_ns()
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.prefix_offsets,
|
||||
batch.read_offsets,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
batch.next_token_chooser.do_sample,
|
||||
batch.next_token_chooser.seeds,
|
||||
batch.top_n_tokens,
|
||||
accepted_ids,
|
||||
batch_top_token_ids,
|
||||
batch_top_token_logprobs,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
index = 0
|
||||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
prefix_offset,
|
||||
read_offset,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
do_sample,
|
||||
seed,
|
||||
top_n_tokens,
|
||||
n_accepted_ids,
|
||||
top_token_ids,
|
||||
top_token_logprobs,
|
||||
) in enumerate(iterator):
|
||||
# Append next token to all tokens
|
||||
next_token_texts = []
|
||||
left = 0
|
||||
|
||||
if n_accepted_ids > 1:
|
||||
if RANK == 0:
|
||||
logger.debug(f"Speculated ids {n_accepted_ids - 1}")
|
||||
|
||||
current_stopped = False
|
||||
for j in range(index, index + n_accepted_ids):
|
||||
# Generated token
|
||||
next_token_id = next_token_ids[j]
|
||||
all_input_ids.append(next_token_id)
|
||||
next_token_text, prefix_offset, read_offset = self.decode_token(
|
||||
all_input_ids,
|
||||
prefix_offset,
|
||||
read_offset,
|
||||
)
|
||||
next_token_texts.append(next_token_text)
|
||||
|
||||
stop, reason = stopping_criteria(
|
||||
next_token_id,
|
||||
next_token_text,
|
||||
)
|
||||
|
||||
if stop:
|
||||
left = index + n_accepted_ids - j - 1
|
||||
current_stopped = True
|
||||
break
|
||||
else:
|
||||
current_stopped = False
|
||||
stopped = stopped and current_stopped
|
||||
|
||||
_next_token_ids = next_token_ids[index : index + n_accepted_ids - left]
|
||||
_next_token_logprobs = next_token_logprobs[
|
||||
index : index + n_accepted_ids - left
|
||||
]
|
||||
index += n_accepted_ids
|
||||
|
||||
# Shard generations
|
||||
# All generations will be appended in the rust sharded client
|
||||
if i % self.world_size == self.rank:
|
||||
if stop:
|
||||
# Decode generated tokens
|
||||
output_text, _, _ = self.decode_token(
|
||||
all_input_ids,
|
||||
prefix_offset=len(all_input_ids)
|
||||
- stopping_criteria.current_tokens
|
||||
- 1,
|
||||
read_offset=len(all_input_ids)
|
||||
- stopping_criteria.current_tokens,
|
||||
skip_special_tokens=True,
|
||||
)
|
||||
generated_text = GeneratedText(
|
||||
output_text,
|
||||
stopping_criteria.current_tokens,
|
||||
reason,
|
||||
seed if do_sample else None,
|
||||
)
|
||||
else:
|
||||
generated_text = None
|
||||
|
||||
# Prefill
|
||||
if prefill and request.prefill_logprobs:
|
||||
out_start_index = batch.prefill_cu_outlens[i]
|
||||
out_end_index = batch.prefill_cu_outlens[i + 1]
|
||||
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
request_prefill_logprobs = [float("nan")] + prefill_logprobs[
|
||||
out_start_index : out_end_index - 1
|
||||
]
|
||||
prefill_token_ids = all_input_ids[:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
|
||||
prefill_tokens = Tokens(
|
||||
prefill_token_ids,
|
||||
request_prefill_logprobs,
|
||||
prefill_texts,
|
||||
is_special=[],
|
||||
)
|
||||
else:
|
||||
prefill_tokens = None
|
||||
|
||||
if top_n_tokens > 0:
|
||||
all_top_tokens = []
|
||||
for top_token_ids, top_token_logprobs in zip(
|
||||
top_token_ids, top_token_logprobs
|
||||
):
|
||||
toptoken_texts = self.tokenizer.batch_decode(
|
||||
top_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
special_toptokens = [
|
||||
token_id in self.all_special_ids
|
||||
for token_id in top_token_ids
|
||||
]
|
||||
top_tokens = Tokens(
|
||||
top_token_ids,
|
||||
top_token_logprobs,
|
||||
toptoken_texts,
|
||||
special_toptokens,
|
||||
)
|
||||
all_top_tokens.append(top_tokens)
|
||||
top_tokens = all_top_tokens
|
||||
else:
|
||||
top_tokens = None
|
||||
|
||||
generation = Generation(
|
||||
request.id,
|
||||
prefill_tokens,
|
||||
Tokens(
|
||||
_next_token_ids,
|
||||
_next_token_logprobs,
|
||||
next_token_texts,
|
||||
[nid in self.all_special_ids for nid in _next_token_ids],
|
||||
),
|
||||
generated_text,
|
||||
top_tokens,
|
||||
)
|
||||
|
||||
generations.append(generation)
|
||||
|
||||
# accept each new token for this specific request since we may
|
||||
# have more than one new token per request with speculative decoding
|
||||
for next_token_id in _next_token_ids:
|
||||
batch.next_token_chooser = (
|
||||
batch.next_token_chooser.advance_grammar_single(i, next_token_id)
|
||||
)
|
||||
|
||||
# Update values
|
||||
batch.input_lengths[i] = input_length + n_accepted_ids
|
||||
if batch.input_lengths[i] > batch.max_seqlen:
|
||||
batch.max_seqlen = batch.input_lengths[i]
|
||||
batch.prefix_offsets[i] = prefix_offset
|
||||
batch.read_offsets[i] = read_offset
|
||||
batch.all_input_ids[i] = all_input_ids
|
||||
|
||||
if stopped:
|
||||
# No need to return a batch if we know that all requests stopped
|
||||
forward_ns = start_decode - start
|
||||
decode_ns = time.time_ns() - start_decode
|
||||
return generations, None, (forward_ns, decode_ns)
|
||||
|
||||
batch.prefill_cu_outlens = None
|
||||
batch.prefill_head_indices = None
|
||||
batch.prefill_next_token_indices = None
|
||||
|
||||
forward_ns = start_decode - start
|
||||
decode_ns = time.time_ns() - start_decode
|
||||
return generations, batch, (forward_ns, decode_ns)
|
|
@ -9,8 +9,8 @@ from transformers import (
|
|||
AutoConfig,
|
||||
PreTrainedTokenizerBase,
|
||||
)
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
from text_generation_server.models.transformers_causal_lm import CausalLMBatch
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
|
||||
from text_generation_server.utils import (
|
||||
|
@ -164,7 +164,7 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
)
|
||||
|
||||
|
||||
class GalacticaSharded(CausalLM):
|
||||
class GalacticaSharded(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -211,7 +211,7 @@ class GalacticaSharded(CausalLM):
|
|||
model = OPTForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -44,3 +44,7 @@ ADAPTER_TO_INDEX: Dict[str, int] = None
|
|||
def set_adapter_to_index(adapter_to_index: Dict[str, int]):
|
||||
global ADAPTER_TO_INDEX
|
||||
ADAPTER_TO_INDEX = adapter_to_index
|
||||
|
||||
|
||||
USE_CUSTOM_MODELING = os.getenv("USE_CUSTOM_MODELING", "true")
|
||||
USE_CUSTOM_MODELING = USE_CUSTOM_MODELING == "true" or USE_CUSTOM_MODELING == "1"
|
||||
|
|
|
@ -7,7 +7,7 @@ from transformers import (
|
|||
AutoTokenizer,
|
||||
AutoConfig,
|
||||
)
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
from text_generation_server.models.custom_modeling.neox_modeling import (
|
||||
GPTNeoxForCausalLM,
|
||||
)
|
||||
|
@ -18,7 +18,7 @@ from text_generation_server.utils import (
|
|||
)
|
||||
|
||||
|
||||
class GPTNeoxSharded(CausalLM):
|
||||
class GPTNeoxSharded(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -64,7 +64,7 @@ class GPTNeoxSharded(CausalLM):
|
|||
model = GPTNeoxForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -8,8 +8,8 @@ from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerBas
|
|||
from huggingface_hub import hf_hub_download
|
||||
import json
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
from text_generation_server.models.transformers_causal_lm import CausalLMBatch
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.custom_modeling.mpt_modeling import (
|
||||
MPTForCausalLM,
|
||||
|
@ -37,7 +37,7 @@ class MPTCausalLMBatch(CausalLMBatch):
|
|||
return batch
|
||||
|
||||
|
||||
class MPTSharded(CausalLM):
|
||||
class MPTSharded(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -89,7 +89,7 @@ class MPTSharded(CausalLM):
|
|||
model = MPTForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -8,7 +8,7 @@ from transformers import (
|
|||
AutoConfig,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
|
@ -16,7 +16,7 @@ from text_generation_server.utils import (
|
|||
)
|
||||
|
||||
|
||||
class OPTSharded(CausalLM):
|
||||
class OPTSharded(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -62,7 +62,7 @@ class OPTSharded(CausalLM):
|
|||
model = OPTForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -4,7 +4,7 @@ import torch.distributed
|
|||
from transformers import AutoConfig, AutoTokenizer
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
from text_generation_server.models.custom_modeling.phi_modeling import (
|
||||
PhiConfig,
|
||||
PhiForCausalLM,
|
||||
|
@ -16,7 +16,7 @@ from text_generation_server.utils import (
|
|||
)
|
||||
|
||||
|
||||
class Phi(CausalLM):
|
||||
class Phi(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -59,7 +59,7 @@ class Phi(CausalLM):
|
|||
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
||||
model = PhiForCausalLM(config, weights)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -3,10 +3,10 @@ import torch
|
|||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
|
||||
|
||||
class RW(CausalLM):
|
||||
class RW(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -61,7 +61,7 @@ class RW(CausalLM):
|
|||
else:
|
||||
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
|
@ -4,7 +4,7 @@ import torch.distributed
|
|||
from typing import Optional, List
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models import TransformersCausalLM
|
||||
|
||||
FIM_PREFIX = "<fim-prefix>"
|
||||
FIM_MIDDLE = "<fim-middle>"
|
||||
|
@ -13,7 +13,7 @@ FIM_PAD = "<fim-pad>"
|
|||
EOD = "<|endoftext|>"
|
||||
|
||||
|
||||
class SantaCoder(CausalLM):
|
||||
class SantaCoder(TransformersCausalLM):
|
||||
def __init__(
|
||||
self,
|
||||
model_id: str,
|
||||
|
@ -61,7 +61,7 @@ class SantaCoder(CausalLM):
|
|||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
super(CausalLM, self).__init__(
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
|
|
Loading…
Reference in New Issue