Add messages api compatibility docs (#1478)

This PR adds a new page to the docs that describes the Messages API and
how to use it.

Additionally this page will contain cloud provider specific information
for enabling and using this feature. This PR includes a SageMaker
example/information.
This commit is contained in:
drbh 2024-01-24 11:41:28 -05:00 committed by GitHub
parent 7e542d4d05
commit 7872b8c55b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 141 additions and 5 deletions

View File

@ -7,6 +7,8 @@
title: Installation
- local: supported_models
title: Supported Models and Hardware
- local: messages_api
title: Messages API
title: Getting started
- sections:
- local: basic_tutorials/consuming_tgi

134
docs/source/messages_api.md Normal file
View File

@ -0,0 +1,134 @@
# Messages API
_Messages API is compatible to OpenAI Chat Completion API_
Text Generation Inference (TGI) now supports the Message API which is fully compatible with the OpenAI Chat Completion API. This means you can use OpenAI's client libraries to interact with TGI's Messages API. Below are some examples of how to utilize this compatibility.
## Making a Request
You can make a request to TGI's Messages API using `curl`. Here's an example:
```bash
curl localhost:3000/v1/chat/completions \
-X POST \
-d '{
"model": "tgi",
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "What is deep learning?"
}
],
"stream": true,
"max_tokens": 20
}' \
-H 'Content-Type: application/json'
```
## Streaming
You can also use OpenAI's Python client library to make a streaming request. Here's how:
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="-"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=True
)
# iterate and print stream
for message in chat_completion:
print(message)
```
## Synchronous
If you prefer to make a synchronous request, you can do so like this:
```python
from openai import OpenAI
# init the client but point it to TGI
client = OpenAI(
base_url="http://localhost:3000/v1",
api_key="-"
)
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
],
stream=False
)
print(chat_completion)
```
## Cloud Providers
TGI can be deployed on various cloud providers for scalable and robust text generation. One such provider is Amazon SageMaker, which has recently added support for TGI. Here's how you can deploy TGI on Amazon SageMaker:
## Amazon SageMaker
To enable the Messages API in Amazon SageMaker you need to set the environment variable `MESSAGES_API_ENABLED=true`.
This will modify the `/invocations` route to accept Messages dictonaries consisting out of role and content. See the example below on how to deploy Llama with the new Messages API.
```python
import json
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
# Hub Model configuration. https://huggingface.co/models
hub = {
'HF_MODEL_ID':'HuggingFaceH4/zephyr-7b-beta',
'SM_NUM_GPUS': json.dumps(1),
'MESSAGES_API_ENABLED': True
}
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
image_uri=get_huggingface_llm_image_uri("huggingface",version="1.4.0"),
env=hub,
role=role,
)
# deploy model to SageMaker Inference
predictor = huggingface_model.deploy(
initial_instance_count=1,
instance_type="ml.g5.2xlarge",
container_startup_health_check_timeout=300,
)
# send request
predictor.predict({
"messages": [
{"role": "system", "content": "You are a helpful assistant." },
{"role": "user", "content": "What is deep learning?"}
]
})
```

View File

@ -72,7 +72,7 @@ struct Args {
#[clap(long, env)]
ngrok_edge: Option<String>,
#[clap(long, env, default_value_t = false)]
chat_enabled_api: bool,
messages_api_enabled: bool,
}
#[tokio::main]
@ -104,7 +104,7 @@ async fn main() -> Result<(), RouterError> {
ngrok,
ngrok_authtoken,
ngrok_edge,
chat_enabled_api,
messages_api_enabled,
} = args;
// Launch Tokio runtime
@ -348,7 +348,7 @@ async fn main() -> Result<(), RouterError> {
ngrok_authtoken,
ngrok_edge,
tokenizer_config,
chat_enabled_api,
messages_api_enabled,
)
.await?;
Ok(())

View File

@ -708,7 +708,7 @@ pub async fn run(
ngrok_authtoken: Option<String>,
ngrok_edge: Option<String>,
tokenizer_config: HubTokenizerConfig,
chat_enabled_api: bool,
messages_api_enabled: bool,
) -> Result<(), axum::BoxError> {
// OpenAPI documentation
#[derive(OpenApi)]
@ -872,7 +872,7 @@ pub async fn run(
.route("/metrics", get(metrics));
// Conditional AWS Sagemaker route
let aws_sagemaker_route = if chat_enabled_api {
let aws_sagemaker_route = if messages_api_enabled {
Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
} else {
Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise