Temporary implem of torch.compile on our stuff.
This commit is contained in:
parent
6f15ac60b2
commit
78f87d5a0c
|
@ -798,11 +798,13 @@ class FlashCausalLM(Model):
|
|||
self.device,
|
||||
)
|
||||
|
||||
self.compiled_model = torch.compile(self.model, mode="reduce-overhead")
|
||||
|
||||
if ENABLE_CUDA_GRAPHS:
|
||||
try:
|
||||
logger.info("Experimental support for Cuda Graphs is enabled")
|
||||
# Warmup cuda graphs
|
||||
for bs in [1, 2, 4] + [8 * i for i in range(8)]:
|
||||
for bs in [1]:
|
||||
if self.speculate is None or self.speculate + 1 <= bs:
|
||||
self.cuda_graph_warmup(bs, max_s, max_bt)
|
||||
except Exception:
|
||||
|
@ -881,7 +883,19 @@ class FlashCausalLM(Model):
|
|||
or cuda_graph is None
|
||||
or batch.speculative_ids is not None
|
||||
):
|
||||
return self.model.forward(
|
||||
if cu_seqlen_prefill is None:
|
||||
return self.compiled_model(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
input_lengths=input_lengths,
|
||||
max_s=max_s,
|
||||
lm_head_indices=lm_head_indices,
|
||||
)
|
||||
return self.model(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
|
|
|
@ -68,6 +68,7 @@ class FlashLlama(FlashCausalLM):
|
|||
weights._set_gptq_params(model_id, revision)
|
||||
|
||||
model = FlashLlamaForCausalLM(config, weights)
|
||||
# model = torch.compile(model, mode="reduce-overhead")
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashLlama, self).__init__(
|
||||
model=model,
|
||||
|
|
|
@ -495,18 +495,33 @@ class BaseFlashMistral(FlashCausalLM):
|
|||
cuda_graph = self.cuda_graphs.get(padded_bs, None)
|
||||
|
||||
if cu_seqlen_prefill is not None or cuda_graph is None:
|
||||
logits, speculative_logits = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
input_lengths=input_lengths,
|
||||
max_s=max_s,
|
||||
prefill_cache_indices=batch.prefill_cache_indices,
|
||||
lm_head_indices=lm_head_indices,
|
||||
)
|
||||
|
||||
if cu_seqlen_prefill is None:
|
||||
logits, speculative_logits = self.compiled_model(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
input_lengths=input_lengths,
|
||||
max_s=max_s,
|
||||
prefill_cache_indices=batch.prefill_cache_indices,
|
||||
lm_head_indices=lm_head_indices,
|
||||
)
|
||||
else:
|
||||
logits, speculative_logits = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
input_lengths=input_lengths,
|
||||
max_s=max_s,
|
||||
prefill_cache_indices=batch.prefill_cache_indices,
|
||||
lm_head_indices=lm_head_indices,
|
||||
)
|
||||
if batch.prefill_cache_indices is not None:
|
||||
batch.prefill_cache_indices = None
|
||||
return logits, speculative_logits
|
||||
|
|
|
@ -149,7 +149,19 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
|||
batch = batches[0]
|
||||
concat_ns = None
|
||||
|
||||
generations, next_batch, timings = self.model.generate_token(batch)
|
||||
torch.profiler._utils._init_for_cuda_graphs()
|
||||
# prof = torch.profiler.profile()
|
||||
# if self.model.rank != 0:
|
||||
if True:
|
||||
import contextlib
|
||||
|
||||
prof = contextlib.nullcontext()
|
||||
else:
|
||||
prof = torch.profiler.profile()
|
||||
with prof:
|
||||
generations, next_batch, timings = self.model.generate_token(batch)
|
||||
# if self.model.rank == 0:
|
||||
# prof.export_chrome_trace(f"out_rank_0.json")
|
||||
self.cache.set(next_batch)
|
||||
|
||||
return generate_pb2.DecodeResponse(
|
||||
|
|
|
@ -507,27 +507,27 @@ class TensorParallelHead(SuperLayer):
|
|||
return super().forward(input)
|
||||
|
||||
world_size = self.process_group.size()
|
||||
if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
|
||||
out_dim = self.linear.weight.shape[0]
|
||||
# if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
|
||||
# out_dim = self.linear.weight.shape[0]
|
||||
|
||||
if input.shape[0] == 1:
|
||||
world_out = input.new_empty(1, out_dim * world_size)
|
||||
local_out = input.new_empty(1, out_dim)
|
||||
gather_input = local_out
|
||||
else:
|
||||
world_out = input.new_empty(out_dim * world_size, input.shape[0])
|
||||
gather_input = input.new_empty(out_dim, input.shape[0])
|
||||
local_out = gather_input.T
|
||||
# if input.shape[0] == 1:
|
||||
# world_out = input.new_empty(1, out_dim * world_size)
|
||||
# local_out = input.new_empty(1, out_dim)
|
||||
# gather_input = local_out
|
||||
# else:
|
||||
# world_out = input.new_empty(out_dim * world_size, input.shape[0])
|
||||
# gather_input = input.new_empty(out_dim, input.shape[0])
|
||||
# local_out = gather_input.T
|
||||
|
||||
torch.mm(input, self.linear.weight.T, out=local_out)
|
||||
# torch.mm(input, self.linear.weight.T, out=local_out)
|
||||
|
||||
torch.distributed.all_gather_into_tensor(
|
||||
world_out, gather_input, group=self.process_group
|
||||
)
|
||||
# torch.distributed.all_gather_into_tensor(
|
||||
# world_out, gather_input, group=self.process_group
|
||||
# )
|
||||
|
||||
if input.shape[0] == 1:
|
||||
return world_out
|
||||
return world_out.T
|
||||
# if input.shape[0] == 1:
|
||||
# return world_out
|
||||
# return world_out.T
|
||||
|
||||
output = super().forward(input)
|
||||
world_output = [
|
||||
|
@ -786,6 +786,7 @@ try:
|
|||
self._sin_k_cached = None
|
||||
self.scaling_factor = scaling_factor
|
||||
self.dynamic_args = None
|
||||
self._update_cos_sin_cache(torch.float16, inv_freq.device, seqlen=4096)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -929,8 +930,6 @@ try:
|
|||
# But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
|
||||
dtype = torch.float32
|
||||
|
||||
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
||||
|
||||
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
||||
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
||||
# Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
|
||||
|
|
Loading…
Reference in New Issue