feat(server): support sharded santacoder (#167)
This commit is contained in:
parent
5fa8ae041c
commit
880a76eed5
|
@ -18,8 +18,11 @@ from text_generation_server.models.t5 import T5Sharded
|
|||
|
||||
try:
|
||||
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
|
||||
from text_generation_server.models.flash_santacoder import FlashSantacoder
|
||||
from text_generation_server.models.flash_llama import FlashLlama, FlashLlamaSharded
|
||||
from text_generation_server.models.flash_santacoder import (
|
||||
FlashSantacoder,
|
||||
FlashSantacoderSharded,
|
||||
)
|
||||
|
||||
FLASH_ATTENTION = torch.cuda.is_available()
|
||||
except ImportError:
|
||||
|
@ -49,6 +52,7 @@ if FLASH_ATTENTION:
|
|||
__all__.append(FlashNeoX)
|
||||
__all__.append(FlashNeoXSharded)
|
||||
__all__.append(FlashSantacoder)
|
||||
__all__.append(FlashSantacoderSharded)
|
||||
__all__.append(FlashLlama)
|
||||
__all__.append(FlashLlamaSharded)
|
||||
|
||||
|
@ -78,9 +82,13 @@ def get_model(
|
|||
else:
|
||||
return Galactica(model_id, revision, quantize=quantize)
|
||||
|
||||
if "santacoder" in model_id:
|
||||
if "bigcode" in model_id:
|
||||
if sharded:
|
||||
raise NotImplementedError("sharded is not supported for Santacoder")
|
||||
if not FLASH_ATTENTION:
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Santacoder")
|
||||
)
|
||||
return FlashSantacoderSharded(model_id, revision=revision)
|
||||
else:
|
||||
santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
|
||||
return santacoder_cls(model_id, revision, quantize)
|
||||
|
|
|
@ -93,10 +93,11 @@ class BLOOMSharded(BLOOM):
|
|||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer, device=device, decode_buffer=1
|
||||
|
@ -108,6 +109,7 @@ class BLOOMSharded(BLOOM):
|
|||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
|
@ -157,7 +159,7 @@ class BLOOMSharded(BLOOM):
|
|||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
|
|
|
@ -373,7 +373,7 @@ class LlamaMLP(nn.Module):
|
|||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else None,
|
||||
else "none",
|
||||
)
|
||||
)
|
||||
|
||||
|
|
|
@ -376,7 +376,12 @@ class FlashMLP(nn.Module):
|
|||
self.act = (
|
||||
ACT2FN[act]
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
||||
else lambda x: torch.nn.functional.gelu(
|
||||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else "none",
|
||||
)
|
||||
)
|
||||
|
||||
if process_group is None:
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
import torch.nn.functional as F
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
|
||||
|
@ -65,6 +67,127 @@ class FastLinear(nn.Linear):
|
|||
return torch.matmul(input, self.weight)
|
||||
|
||||
|
||||
class TensorParallelColumnLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
assert out_features % self.tp_world_size == 0
|
||||
out_features = out_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
class TensorParallelRowLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
reduce=True,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
self.reduce = reduce
|
||||
assert in_features % self.tp_world_size == 0
|
||||
in_features = in_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
out = super(TensorParallelRowLinear, self).forward(input)
|
||||
if self.reduce:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TensorParallelEmbedding(nn.Embedding):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
reduce=True,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.0,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
_weight=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
self.reduce = reduce
|
||||
|
||||
self.original_num_embeddings = num_embeddings
|
||||
|
||||
assert num_embeddings % self.tp_world_size == 0
|
||||
block_size = num_embeddings // self.tp_world_size
|
||||
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
||||
self.min_id = self.tp_rank * block_size
|
||||
self.max_id = (self.tp_rank + 1) * block_size
|
||||
|
||||
# Additional entry that will map to zero
|
||||
# Used for masking
|
||||
self.null_idx = block_size
|
||||
|
||||
super().__init__(
|
||||
block_size,
|
||||
embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=_weight,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def add_null_idx(self):
|
||||
"""Additional 0 entry used for masking"""
|
||||
self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1)))
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
||||
# translate for [0, self.max_id - self.min_id[
|
||||
input = torch.where(
|
||||
(self.min_id > input) | (input >= self.max_id),
|
||||
self.null_idx,
|
||||
input - self.min_id,
|
||||
)
|
||||
out = super().forward(input)
|
||||
if self.reduce:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
||||
|
||||
|
||||
class FlashMQAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -80,10 +203,16 @@ class FlashMQAttention(torch.nn.Module):
|
|||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
|
||||
if process_group is None:
|
||||
self.attn = FastLinear(hidden_size, hidden_size + 2 * self.head_size)
|
||||
self.c_attn = FastLinear(hidden_size, hidden_size + 2 * self.head_size)
|
||||
self.c_proj = FastLinear(hidden_size, hidden_size)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
self.num_heads = self.num_heads // process_group.size()
|
||||
self.c_attn = FastLinear(hidden_size, self.head_size * (self.num_heads + 2))
|
||||
self.c_proj = TensorParallelRowLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
process_group=process_group,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
@ -94,10 +223,12 @@ class FlashMQAttention(torch.nn.Module):
|
|||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
qkv = self.attn(hidden_states)
|
||||
qkv = self.c_attn(hidden_states)
|
||||
|
||||
# Split query from key_value
|
||||
query, key_value = qkv.split([self.hidden_size, 2 * self.head_size], dim=1)
|
||||
query, key_value = qkv.split(
|
||||
[self.head_size * self.num_heads, 2 * self.head_size], dim=1
|
||||
)
|
||||
|
||||
# Prepare query and key_value for indexing
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
|
@ -171,7 +302,7 @@ class MLP(nn.Module):
|
|||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else None,
|
||||
else "none",
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -179,7 +310,16 @@ class MLP(nn.Module):
|
|||
self.c_fc = FastLinear(hidden_size, intermediate_size)
|
||||
self.c_proj = FastLinear(intermediate_size, hidden_size)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
self.c_fc = TensorParallelColumnLinear(
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.c_proj = TensorParallelRowLinear(
|
||||
intermediate_size,
|
||||
hidden_size,
|
||||
process_group=process_group,
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.c_fc(hidden_states)
|
||||
|
@ -246,11 +386,30 @@ class FlashSantacoderModel(nn.Module):
|
|||
super().__init__()
|
||||
self.config = config
|
||||
|
||||
self.process_group = process_group
|
||||
self.tp_embeddings = False
|
||||
if process_group is not None:
|
||||
raise NotImplementedError
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
if config.vocab_size % self.tp_world_size == 0:
|
||||
self.tp_embeddings = True
|
||||
|
||||
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
if self.tp_embeddings:
|
||||
self.wte = TensorParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
reduce=False,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.wpe = TensorParallelEmbedding(
|
||||
config.max_position_embeddings,
|
||||
config.hidden_size,
|
||||
reduce=False,
|
||||
process_group=process_group,
|
||||
)
|
||||
else:
|
||||
self.wte = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.wpe = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
||||
|
||||
self.h = nn.ModuleList(
|
||||
[
|
||||
|
@ -273,9 +432,12 @@ class FlashSantacoderModel(nn.Module):
|
|||
self.num_heads = self.h[0].attn.num_heads
|
||||
|
||||
def post_load_weights(self):
|
||||
if self.tp_embeddings:
|
||||
self.wte.add_null_idx()
|
||||
self.wpe.add_null_idx()
|
||||
for layer in self.h:
|
||||
layer: Block
|
||||
layer.attn.attn.transpose_weight()
|
||||
layer.attn.c_attn.transpose_weight()
|
||||
layer.attn.c_proj.transpose_weight()
|
||||
layer.mlp.c_fc.transpose_weight()
|
||||
layer.mlp.c_proj.transpose_weight()
|
||||
|
@ -289,6 +451,8 @@ class FlashSantacoderModel(nn.Module):
|
|||
past_key_values=None,
|
||||
):
|
||||
hidden_states = self.wte(input_ids) + self.wpe(position_ids)
|
||||
if self.tp_embeddings:
|
||||
torch.distributed.all_reduce(hidden_states, group=self.process_group)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
|
@ -335,7 +499,14 @@ class FlashSantacoderForCausalLM(nn.Module):
|
|||
|
||||
self.transformer = FlashSantacoderModel(config, process_group)
|
||||
|
||||
self.lm_head = FastLinear(config.hidden_size, config.vocab_size, bias=False)
|
||||
if self.transformer.tp_embeddings:
|
||||
self.lm_head = FastLinear(
|
||||
config.hidden_size,
|
||||
config.vocab_size // process_group.size(),
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
self.lm_head = FastLinear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def post_load_weights(self):
|
||||
self.transformer.post_load_weights()
|
||||
|
@ -352,4 +523,18 @@ class FlashSantacoderForCausalLM(nn.Module):
|
|||
hidden_states, present = self.transformer(
|
||||
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
||||
)
|
||||
return self.lm_head(hidden_states), present
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
if self.transformer.tp_embeddings:
|
||||
# Logits are sharded, so we need to gather them
|
||||
world_logits = [
|
||||
torch.empty_like(logits) for _ in range(self.transformer.tp_world_size)
|
||||
]
|
||||
torch.distributed.all_gather(
|
||||
world_logits, logits, group=self.transformer.process_group
|
||||
)
|
||||
world_logits = torch.cat(world_logits, dim=1)
|
||||
|
||||
return world_logits, present
|
||||
|
||||
return logits, present
|
||||
|
|
|
@ -5,7 +5,7 @@ from accelerate import init_empty_weights
|
|||
from opentelemetry import trace
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
from typing import Optional, Tuple, List
|
||||
from typing import Optional, List
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
|
||||
|
@ -63,13 +63,13 @@ class FlashNeoXSharded(FlashNeoX):
|
|||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
model.post_load_weights()
|
||||
self.model = model.eval().to(dtype)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
|
@ -80,16 +80,14 @@ class FlashNeoXSharded(FlashNeoX):
|
|||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
with safe_open(file, framework="pt", device=str(device)) as f:
|
||||
for name in f.keys():
|
||||
module_name, param_name = name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
@ -142,7 +140,7 @@ class FlashNeoXSharded(FlashNeoX):
|
|||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
module._parameters[param_name] = tensor
|
||||
|
|
|
@ -3,15 +3,20 @@ import torch.distributed
|
|||
|
||||
from accelerate import init_empty_weights
|
||||
from opentelemetry import trace
|
||||
from safetensors import safe_open
|
||||
from pathlib import Path
|
||||
from transformers import AutoTokenizer, AutoConfig
|
||||
from transformers import AutoTokenizer, GPT2Config
|
||||
from typing import Optional, List
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
|
||||
FlashSantacoderForCausalLM,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
weight_hub_files,
|
||||
|
@ -36,10 +41,9 @@ class FlashSantacoder(FlashCausalLM):
|
|||
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
config = GPT2Config.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
trust_remote_code=True, # Needed as the config is not part of Transformers
|
||||
)
|
||||
|
||||
# We do not use from_pretrained as we modified the model internal module layout
|
||||
|
@ -54,12 +58,9 @@ class FlashSantacoder(FlashCausalLM):
|
|||
model = FlashSantacoderForCausalLM(config)
|
||||
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
device,
|
||||
dtype,
|
||||
model, filenames, device, dtype, config.architectures[0].startswith("GPT2")
|
||||
)
|
||||
self.model = model.eval().to(device).to(dtype)
|
||||
self.model = model.eval()
|
||||
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer, device=device, decode_buffer=1
|
||||
|
@ -71,6 +72,7 @@ class FlashSantacoder(FlashCausalLM):
|
|||
filenames: List[Path],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
transpose: bool,
|
||||
):
|
||||
for filename in filenames:
|
||||
state_dict = torch.load(filename, map_location="cpu")
|
||||
|
@ -81,9 +83,9 @@ class FlashSantacoder(FlashCausalLM):
|
|||
|
||||
# Fused qkv
|
||||
if "q_attn.weight" in key or "kv_attn.weight" in key:
|
||||
final_key = layer_name + ".attn.weight"
|
||||
final_key = layer_name + ".c_attn.weight"
|
||||
elif "q_attn.bias" in key or "kv_attn.bias" in key:
|
||||
final_key = layer_name + ".attn.bias"
|
||||
final_key = layer_name + ".c_attn.bias"
|
||||
|
||||
else:
|
||||
final_key = key
|
||||
|
@ -97,18 +99,19 @@ class FlashSantacoder(FlashCausalLM):
|
|||
current_parameter_tensor = None
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
if (
|
||||
if transpose and (
|
||||
"c_fc.weight" in key
|
||||
or "c_proj.weight" in key
|
||||
or "q_attn.weight" in key
|
||||
or "kv_attn.weight" in key
|
||||
or "c_attn.weight" in key
|
||||
):
|
||||
# Tranpose as we use nn.Linear instead of Conv1D
|
||||
value = value.T
|
||||
|
||||
if current_parameter_tensor.device == torch.device("meta"):
|
||||
# Init qkv
|
||||
if "attn.weight" in final_key:
|
||||
if "c_attn.weight" in final_key:
|
||||
module._parameters[param_name] = value.new_empty(
|
||||
(
|
||||
model.transformer.head_size
|
||||
|
@ -116,7 +119,7 @@ class FlashSantacoder(FlashCausalLM):
|
|||
value.shape[1],
|
||||
)
|
||||
)
|
||||
elif "attn.bias" in final_key:
|
||||
elif "c_attn.bias" in final_key:
|
||||
module._parameters[param_name] = value.new_empty(
|
||||
(
|
||||
model.transformer.head_size
|
||||
|
@ -156,3 +159,208 @@ class FlashSantacoder(FlashCausalLM):
|
|||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
|
||||
)
|
||||
|
||||
|
||||
class FlashSantacoderSharded(FlashSantacoder):
|
||||
def __init__(
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashSantacoderSharded is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError(
|
||||
"FlashSantacoderSharded does not support quantization"
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||
)
|
||||
|
||||
config = GPT2Config.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
model = FlashSantacoderForCausalLM(config, self.process_group)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
transpose=config.architectures[0].startswith("GPT2"),
|
||||
)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
transpose: bool,
|
||||
):
|
||||
for file in filenames:
|
||||
with safe_open(file, framework="pt", device=str(device)) as f:
|
||||
for key in f.keys():
|
||||
slice_ = f.get_slice(key)
|
||||
|
||||
layer_name = ".".join(key.split(".")[:4])
|
||||
|
||||
# Fused qkv
|
||||
if "q_attn.weight" in key or "kv_attn.weight" in key:
|
||||
final_key = layer_name + ".c_attn.weight"
|
||||
elif "q_attn.bias" in key or "kv_attn.bias" in key:
|
||||
final_key = layer_name + ".c_attn.bias"
|
||||
else:
|
||||
final_key = key
|
||||
|
||||
module_name, param_name = final_key.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
dim = 1 if transpose and "weight" in param_name else 0
|
||||
size = slice_.get_shape()[dim]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = (
|
||||
slice_[start:stop] if dim == 0 else slice_[:, start:stop]
|
||||
)
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
dim = 0 if transpose else 1
|
||||
size = slice_.get_shape()[dim]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = (
|
||||
slice_[start:stop]
|
||||
if dim == 0
|
||||
else slice_[:, start:stop]
|
||||
)
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif key == "lm_head.weight" and model.transformer.tp_embeddings:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(key)
|
||||
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
try:
|
||||
current_parameter_tensor = module._parameters[param_name]
|
||||
except KeyError:
|
||||
current_parameter_tensor = None
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
if transpose and (
|
||||
"c_fc.weight" in key
|
||||
or "c_proj.weight" in key
|
||||
or "q_attn.weight" in key
|
||||
or "kv_attn.weight" in key
|
||||
or "c_attn.weight" in key
|
||||
):
|
||||
# Tranpose as we use nn.Linear instead of Conv1D
|
||||
tensor = tensor.T
|
||||
|
||||
if current_parameter_tensor.device == torch.device("meta"):
|
||||
# Init qkv
|
||||
if "c_attn.weight" in final_key:
|
||||
module._parameters[param_name] = tensor.new_empty(
|
||||
(
|
||||
model.transformer.head_size
|
||||
* (model.transformer.num_heads + 2),
|
||||
tensor.shape[1],
|
||||
)
|
||||
)
|
||||
elif "c_attn.bias" in final_key:
|
||||
module._parameters[param_name] = tensor.new_empty(
|
||||
(
|
||||
model.transformer.head_size
|
||||
* (model.transformer.num_heads + 2)
|
||||
)
|
||||
)
|
||||
|
||||
# Copy to correct slice
|
||||
if "q_attn" in key:
|
||||
size = tensor.shape[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = tensor[start:stop]
|
||||
module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||
elif "kv_attn.weight" in key:
|
||||
module._parameters[param_name][
|
||||
model.transformer.head_size
|
||||
* model.transformer.num_heads :
|
||||
] = tensor
|
||||
elif "kv_attn.bias" in key:
|
||||
module._parameters[param_name][
|
||||
model.transformer.head_size
|
||||
* model.transformer.num_heads :
|
||||
] = tensor
|
||||
elif "c_attn" in key:
|
||||
# Slice q_tensor by shard
|
||||
q_tensor = tensor[: -2 * model.transformer.head_size]
|
||||
block_size = q_tensor.shape[0] // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
q_tensor = q_tensor[start:stop]
|
||||
|
||||
module._parameters[param_name][
|
||||
: q_tensor.shape[0]
|
||||
] = q_tensor
|
||||
|
||||
# Kv tensor is copied for every shard
|
||||
kv_tensor = tensor[-2 * model.transformer.head_size :]
|
||||
module._parameters[param_name][
|
||||
q_tensor.shape[0] :
|
||||
] = kv_tensor
|
||||
else:
|
||||
if current_parameter_tensor.shape != tensor.shape:
|
||||
raise ValueError(
|
||||
f"Name {key} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
module._parameters[param_name] = tensor
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
torch.cuda.empty_cache()
|
||||
model.post_load_weights()
|
||||
|
|
|
@ -219,10 +219,11 @@ class GalacticaSharded(Galactica):
|
|||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
|
@ -235,6 +236,7 @@ class GalacticaSharded(Galactica):
|
|||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
|
@ -285,7 +287,7 @@ class GalacticaSharded(Galactica):
|
|||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
|
|
|
@ -64,10 +64,11 @@ class GPTNeoxSharded(CausalLM):
|
|||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
|
@ -80,6 +81,7 @@ class GPTNeoxSharded(CausalLM):
|
|||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
|
@ -140,7 +142,7 @@ class GPTNeoxSharded(CausalLM):
|
|||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
|
|
|
@ -80,10 +80,11 @@ class OPTSharded(OPT):
|
|||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
|
@ -96,6 +97,7 @@ class OPTSharded(OPT):
|
|||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
|
@ -146,7 +148,7 @@ class OPTSharded(OPT):
|
|||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
|
|
|
@ -64,10 +64,11 @@ class T5Sharded(Seq2SeqLM):
|
|||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(Seq2SeqLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
|
@ -80,6 +81,7 @@ class T5Sharded(Seq2SeqLM):
|
|||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
|
@ -146,7 +148,7 @@ class T5Sharded(Seq2SeqLM):
|
|||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
|
|
Loading…
Reference in New Issue