(feat) fp8 fnuz support for rocm
This commit is contained in:
parent
2401fdc889
commit
8ee9823d3b
|
@ -1,7 +1,7 @@
|
|||
import torch
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Union, List
|
||||
from typing import Optional, Tuple, Union, List
|
||||
from loguru import logger
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
|
@ -51,8 +51,32 @@ def get_fp8_linear() -> torch.nn.Module:
|
|||
return Fp8Linear
|
||||
|
||||
|
||||
def normalize_e4m3fn_to_e4m3fnuz(
|
||||
weight: torch.Tensor,
|
||||
weight_scale: torch.Tensor,
|
||||
input_scale: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
|
||||
assert weight.dtype == torch.float8_e4m3fn
|
||||
# The bits pattern 10000000(-128) represents zero in e4m3fn
|
||||
# but NaN in e4m3fnuz. So here we set it to 0.
|
||||
# https://onnx.ai/onnx/technical/float8.html
|
||||
weight_as_int8 = weight.view(torch.int8)
|
||||
ROCM_FP8_NAN_AS_INT = -128
|
||||
weight_as_int8[weight_as_int8 == ROCM_FP8_NAN_AS_INT] = 0
|
||||
weight = weight_as_int8.view(torch.float8_e4m3fnuz)
|
||||
|
||||
# For the same bits representation, e4m3fnuz value is half of
|
||||
# the e4m3fn value, so we should double the scaling factor to
|
||||
# get the same dequantized value.
|
||||
# https://onnx.ai/onnx/technical/float8.html
|
||||
weight_scale = weight_scale * 2.0
|
||||
if input_scale is not None:
|
||||
input_scale = input_scale * 2.0
|
||||
return weight, weight_scale, input_scale
|
||||
|
||||
|
||||
def fp8_quantize(
|
||||
weight, scale_upper_bound=None, qdtype=torch.float8_e4m3fn, scalar=False
|
||||
weight, scale=None, scale_upper_bound=None, qdtype=torch.float8_e4m3fn, scalar=False
|
||||
):
|
||||
if FBGEMM_DYN_AVAILABLE and not scalar:
|
||||
qweight, scale = torch.ops.fbgemm.quantize_fp8_per_row(
|
||||
|
@ -62,8 +86,11 @@ def fp8_quantize(
|
|||
|
||||
# weight, scale = quant_weights(weight, torch.int8, False)
|
||||
finfo = torch.finfo(qdtype)
|
||||
|
||||
if scale is None:
|
||||
# Calculate the scale as dtype max divided by absmax
|
||||
scale = finfo.max / weight.abs().max().clamp(min=1e-12, max=scale_upper_bound)
|
||||
|
||||
# scale and clamp the tensor to bring it to
|
||||
# the representative range of float8 data type
|
||||
# (as default cast is unsaturated)
|
||||
|
@ -72,6 +99,10 @@ def fp8_quantize(
|
|||
# as both required as inputs to torch._scaled_mm
|
||||
qweight = qweight.to(qdtype)
|
||||
scale = scale.float().reciprocal()
|
||||
|
||||
if SYSTEM == "rocm":
|
||||
qweight, scale, _ = normalize_e4m3fn_to_e4m3fnuz(qweight, scale)
|
||||
|
||||
return qweight, scale
|
||||
|
||||
|
||||
|
@ -92,9 +123,17 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
|||
.reshape(-1)
|
||||
.expand(w.shape[0])
|
||||
)
|
||||
try:
|
||||
input_scale = weights.get_tensor(
|
||||
f"{prefix}.input_scale", to_dtype=False
|
||||
).reshape(-1)
|
||||
except Exception:
|
||||
input_scale = None
|
||||
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
input_scale=input_scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
|
@ -124,10 +163,25 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
|||
to_dtype=False,
|
||||
)
|
||||
scale = scale.reshape(-1).expand(w.shape[0])
|
||||
try:
|
||||
input_scale = weights.get_tensor(
|
||||
f"{prefix}.input_scale", to_dtype=False
|
||||
)
|
||||
if input_scale.numel() > 1:
|
||||
input_scale = weights.get_packed_sharded(
|
||||
f"{prefix}.input_scale",
|
||||
dim=0,
|
||||
block_sizes=block_sizes,
|
||||
to_dtype=False,
|
||||
)
|
||||
input_scale = input_scale.reshape(-1).max()
|
||||
except Exception:
|
||||
input_scale = None
|
||||
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
input_scale=input_scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
|
@ -153,10 +207,19 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
|||
for p, shape in zip(prefixes, shapes)
|
||||
]
|
||||
scale = torch.cat(scale, dim=0).reshape(-1)
|
||||
try:
|
||||
input_scale = [
|
||||
_load_scalar_or_matrix_scale(weights, f"{p}.input_scale", shape)
|
||||
for p, shape in zip(prefixes, shapes)
|
||||
]
|
||||
input_scale = torch.cat(input_scale, dim=0).reshape(-1).max()
|
||||
except Exception:
|
||||
input_scale = None
|
||||
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
input_scale=input_scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
|
@ -174,9 +237,17 @@ class HybridFP8UnquantLoader(WeightsLoader):
|
|||
.reshape(-1)
|
||||
.expand(w.shape[0])
|
||||
)
|
||||
try:
|
||||
input_scale = weights.get_tensor(
|
||||
f"{prefix}.input_scale", to_dtype=False
|
||||
).reshape(-1)
|
||||
except Exception:
|
||||
input_scale = None
|
||||
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
input_scale=input_scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
|
@ -191,6 +262,7 @@ class Fp8Weight(Weight):
|
|||
weight: torch.Tensor
|
||||
dtype: torch.dtype
|
||||
weight_scale: Optional[torch.Tensor] = None
|
||||
input_scale: Optional[torch.Tensor] = None
|
||||
activation_scale_ub: Optional[float] = None
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
|
@ -200,15 +272,23 @@ class Fp8Weight(Weight):
|
|||
# memory. Can be non-contiguous when we e.g. expand from scalars.
|
||||
self.weight_scale = self.weight_scale.contiguous()
|
||||
return get_fp8_linear().from_fp8(
|
||||
self.weight, self.weight_scale, self.activation_scale_ub, bias, self.dtype
|
||||
self.weight,
|
||||
self.weight_scale,
|
||||
self.input_scale,
|
||||
self.activation_scale_ub,
|
||||
bias,
|
||||
self.dtype,
|
||||
)
|
||||
|
||||
|
||||
class Fp8Linear(torch.nn.Module):
|
||||
_device_identity_cache = {}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qweight,
|
||||
scale,
|
||||
input_scale,
|
||||
scale_upper_bound,
|
||||
bias,
|
||||
dtype,
|
||||
|
@ -217,9 +297,19 @@ class Fp8Linear(torch.nn.Module):
|
|||
if FBGEMM_MM_AVAILABLE:
|
||||
log_once(logger.info, "Using FBGEMM fp8 optimized kernels")
|
||||
|
||||
if SYSTEM == "rocm":
|
||||
qweight, scale, _ = normalize_e4m3fn_to_e4m3fnuz(
|
||||
weight=qweight, weight_scale=scale
|
||||
)
|
||||
|
||||
self.dtype = dtype
|
||||
self.qweight = qweight
|
||||
self.scale = scale
|
||||
self.scale = scale.float()
|
||||
self.input_scale = (
|
||||
input_scale.float().reciprocal() if input_scale is not None else None
|
||||
)
|
||||
|
||||
if FBGEMM_MM_AVAILABLE:
|
||||
self.scale_upper_bound = (
|
||||
torch.tensor(
|
||||
[scale_upper_bound], dtype=torch.float32, device=qweight.device
|
||||
|
@ -227,6 +317,8 @@ class Fp8Linear(torch.nn.Module):
|
|||
if scale_upper_bound is not None
|
||||
else None
|
||||
)
|
||||
else:
|
||||
self.scale_upper_bound = scale_upper_bound
|
||||
|
||||
self.bias = bias if bias is not None else None
|
||||
|
||||
|
@ -238,18 +330,27 @@ class Fp8Linear(torch.nn.Module):
|
|||
)
|
||||
|
||||
@classmethod
|
||||
def from_fp8(cls, weight, scale, input_scale, bias, dtype):
|
||||
def from_fp8(cls, weight, scale, input_scale, scale_upper_bound, bias, dtype):
|
||||
if FBGEMM_DYN_AVAILABLE:
|
||||
# fbgemm needs float32 scales.
|
||||
scale = scale.float()
|
||||
return cls(
|
||||
qweight=weight,
|
||||
scale=scale,
|
||||
scale_upper_bound=input_scale,
|
||||
input_scale=input_scale,
|
||||
scale_upper_bound=scale_upper_bound,
|
||||
bias=bias,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_shared_device_identity(cls, device):
|
||||
# Input scaling factors are no longer optional in _scaled_mm starting
|
||||
# from pytorch 2.5. Allocating a dummy tensor to pass as input_scale
|
||||
if device not in cls._device_identity_cache:
|
||||
cls._device_identity_cache[device] = torch.ones(1, device=device)
|
||||
return cls._device_identity_cache[device]
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if FBGEMM_MM_AVAILABLE:
|
||||
qinput, scale = fp8_quantize(
|
||||
|
@ -266,8 +367,18 @@ class Fp8Linear(torch.nn.Module):
|
|||
)
|
||||
return y.to(self.dtype)
|
||||
|
||||
qinput, scale = fp8_quantize(input, scalar=True)
|
||||
output, _ = torch._scaled_mm(
|
||||
qinput, scale = fp8_quantize(
|
||||
input,
|
||||
self.input_scale,
|
||||
scale_upper_bound=self.scale_upper_bound,
|
||||
scalar=True,
|
||||
)
|
||||
|
||||
per_tensor_weights = self.scale.numel() == 1
|
||||
per_tensor_activations = scale.numel() == 1
|
||||
|
||||
if SYSTEM != "rocm" or (per_tensor_weights and per_tensor_activations):
|
||||
output = torch._scaled_mm(
|
||||
qinput,
|
||||
self.qweight.t(),
|
||||
out_dtype=self.dtype,
|
||||
|
@ -275,6 +386,30 @@ class Fp8Linear(torch.nn.Module):
|
|||
scale_b=self.scale,
|
||||
bias=self.bias,
|
||||
)
|
||||
|
||||
if type(output) is tuple and len(output) == 2:
|
||||
output = output[0]
|
||||
else:
|
||||
device_identity = None
|
||||
if SYSTEM == "rocm":
|
||||
device_identity = self.get_shared_device_identity(self.qweight.device)
|
||||
|
||||
output = torch._scaled_mm(
|
||||
qinput,
|
||||
self.qweight.t(),
|
||||
scale_a=device_identity,
|
||||
scale_b=device_identity,
|
||||
out_dtype=torch.float32,
|
||||
)
|
||||
if type(output) is tuple and len(output) == 2:
|
||||
output = output[0]
|
||||
|
||||
output = output * scale * self.scale.t()
|
||||
if self.bias is not None:
|
||||
output = output + self.bias
|
||||
|
||||
output = output.to(dtype=self.dtype)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@ class GPTQMarlinFP8Linear(nn.Module):
|
|||
return cls(qweight=qweight, scales=scales.to(dtype), bias=bias)
|
||||
|
||||
@classmethod
|
||||
def from_fp8(cls, weight, scale, _input_scale, bias, dtype):
|
||||
def from_fp8(cls, weight, scale, _input_scale, _scale_upper_bound, bias, dtype):
|
||||
return cls(qweight=weight, scales=scale.to(dtype), bias=bias)
|
||||
|
||||
def forward(self, A: torch.Tensor) -> torch.Tensor:
|
||||
|
|
|
@ -340,7 +340,7 @@ def get_model(
|
|||
if method in {"gptq", "awq", "exl2"}:
|
||||
log_master(logger.info, f"Auto selecting quantization method {method}")
|
||||
quantize = method
|
||||
elif method == "fbgemm_fp8":
|
||||
elif method == "fbgemm_fp8" or method == "fp8":
|
||||
log_master(logger.info, "Auto selecting quantization method fp8")
|
||||
quantize = "fp8"
|
||||
else:
|
||||
|
|
Loading…
Reference in New Issue