Lifting check_unitialized. (#325)
# What does this PR do? Lifting check_unitialized. <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
This commit is contained in:
parent
73d84c6ee5
commit
91e674bb85
|
@ -238,15 +238,6 @@ class BLOOMSharded(BLOOM):
|
||||||
if name == "word_embeddings.weight":
|
if name == "word_embeddings.weight":
|
||||||
model.lm_head._parameters["weight"] = tensor
|
model.lm_head._parameters["weight"] = tensor
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||||
):
|
):
|
||||||
|
|
|
@ -139,15 +139,6 @@ class FlashLlama(FlashCausalLM):
|
||||||
|
|
||||||
del value
|
del value
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
|
||||||
|
@ -315,14 +306,5 @@ class FlashLlamaSharded(FlashLlama):
|
||||||
else:
|
else:
|
||||||
module._buffers[param_name] = tensor
|
module._buffers[param_name] = tensor
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
|
|
@ -152,13 +152,4 @@ class FlashNeoXSharded(FlashNeoX):
|
||||||
else:
|
else:
|
||||||
module._buffers[param_name] = tensor
|
module._buffers[param_name] = tensor
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
|
|
@ -376,17 +376,6 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||||
else:
|
else:
|
||||||
module._buffers[param_name] = tensor
|
module._buffers[param_name] = tensor
|
||||||
|
|
||||||
|
|
||||||
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
|
|
@ -365,15 +365,6 @@ class GalacticaSharded(Galactica):
|
||||||
if name == "model.decoder.embed_tokens.weight":
|
if name == "model.decoder.embed_tokens.weight":
|
||||||
model.lm_head._parameters["weight"] = tensor
|
model.lm_head._parameters["weight"] = tensor
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||||
):
|
):
|
||||||
|
|
|
@ -215,15 +215,6 @@ class GPTNeoxSharded(CausalLM):
|
||||||
else:
|
else:
|
||||||
module._buffers[param_name] = tensor
|
module._buffers[param_name] = tensor
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||||
):
|
):
|
||||||
|
|
|
@ -32,6 +32,7 @@ class Model(ABC):
|
||||||
self.decode_buffer = decode_buffer
|
self.decode_buffer = decode_buffer
|
||||||
self.rank = rank
|
self.rank = rank
|
||||||
self.world_size = world_size
|
self.world_size = world_size
|
||||||
|
self.check_initialized()
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def info(self) -> InfoResponse:
|
def info(self) -> InfoResponse:
|
||||||
|
@ -99,3 +100,13 @@ class Model(ABC):
|
||||||
return token_text, None, None
|
return token_text, None, None
|
||||||
else:
|
else:
|
||||||
return "", offset, token_offset
|
return "", offset, token_offset
|
||||||
|
|
||||||
|
def check_initialized(self):
|
||||||
|
uninitialized_parameters = []
|
||||||
|
for n, p in self.model.named_parameters():
|
||||||
|
if p.data.device == torch.device("meta"):
|
||||||
|
uninitialized_parameters.append(n)
|
||||||
|
if uninitialized_parameters:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"found uninitialized parameters in model {self.__class__.__name__}: {uninitialized_parameters}"
|
||||||
|
)
|
||||||
|
|
|
@ -212,15 +212,6 @@ class OPTSharded(OPT):
|
||||||
if name == "model.decoder.embed_tokens.weight":
|
if name == "model.decoder.embed_tokens.weight":
|
||||||
model.lm_head._parameters["weight"] = tensor
|
model.lm_head._parameters["weight"] = tensor
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||||
):
|
):
|
||||||
|
|
|
@ -222,15 +222,6 @@ class T5Sharded(Seq2SeqLM):
|
||||||
else:
|
else:
|
||||||
module._buffers[param_name] = tensor
|
module._buffers[param_name] = tensor
|
||||||
|
|
||||||
uninitialized_parameters = []
|
|
||||||
for n, p in model.named_parameters():
|
|
||||||
if p.data.device == torch.device("meta"):
|
|
||||||
uninitialized_parameters.append(n)
|
|
||||||
if uninitialized_parameters:
|
|
||||||
raise RuntimeError(
|
|
||||||
f"found uninitialized parameters in model: {uninitialized_parameters}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
input_ids,
|
input_ids,
|
||||||
|
|
Loading…
Reference in New Issue